Advertisement

Overview

  • Valeria P. Sülsen
  • Virginia S. Martino
Chapter

Abstract

Sesquiterpene lactones (STLs) are a group of naturally occurring compounds, most of them found in the Asteraceae family but also present in Apiaceae, Magnoliaceae, and Lauraceae. To date about 8000 compounds have been reported. They consist of a C15 backbone with numerous modifications resulting in a variety of structures but with the common feature of a γ-lactone ring. They are classified in four major groups: germacranolides, eudesmanolides, guaianolides, and pseudoguaianolides, though there are other subtypes. There has been an increasing interest in sesquiterpene lactones due to the wide range of biological activities they present. Among the activities found, antimicrobial, antitumor, anti-inflammatory, antioxidant, antiulcerogenic, molluscicidal, antihelminthic, hepatoprotective and hepatotherapeutic, antiprotozoal, antidepressant, and bitter properties have been described. Besides, they play an important role in the interaction of plants with insects acting as attractants, deterrents, and antifeedants. These compounds were considered at first highly cytotoxic, but chemical transformations have enhanced their biological activities and diminished their cytotoxicity, so considerable attention has been drawn again on them as lead molecules. Artemisinin derivatives, artesunate, and artemether are drugs currently being employed, and dimethylaminoparthenolide, a parthenolide synthetic analogue, and mipsagargin, a prodrug from thapsigargin, are under clinical trials.

A summary with the most important findings about the known sesquiterpene lactones, artemisinin, parthenolide, cynaropicrin, dehydroleucodine, mexicanin, helenalin, costunolide, santonin, arglabin, and thapsigargin, will be given.

Studies about the adverse health effects, toxicity, and ecological roles of some sesquiterpene lactones are also mentioned.

Keywords

Sesquiterpene lactones Chemical aspects Biological activities Adverse effects Toxicity 

References

  1. Abderrazak A, El Hadri K, Bosc E et al (2016) Inhibition of the inflammasome NLRP3 by arglabin attenuates inflammation, protects pancreatic β-cells from apoptosis, and prevents type 2 diabetes mellitus development in ApoE2Ki mice on a chronic high-fat diet. J Pharmacol Exp Ther 357(3):487–494. https://doi.org/10.1124/jpet.116.232934 CrossRefPubMedGoogle Scholar
  2. Adekenov SM (2013) Natural sesquiterpene lactones as renewable chemical materials for new medicinal products. Eurasian Chem Technol J 15:163–174CrossRefGoogle Scholar
  3. Adekenov SM (2016) Chemical modifications of arglabin and biological activity of its new derivatives. Fitoterapia 110:196–205CrossRefPubMedGoogle Scholar
  4. Adekenov SM, Atazhanova GA (2013) Heteroatom-containing natural sesquiterpene lactones and methods for their obtaining. Eurasian Chem Technol J 15:195–208CrossRefGoogle Scholar
  5. Adekenov S, Mukhammetzhanov MN, Kagarlittski AN et al (1982) Arglabin a new sesquiterpene lactone from Artemisia glabella. Chem Nat Compd 18:623–624CrossRefGoogle Scholar
  6. Ahern JR, Whitney KD (2014) Sesquiterpene lactone stereochemistry influences herbivore resistance and plant fitness in the field. Ann Bot 113(4):731–740. https://doi.org/10.1093/aob/mct297 CrossRefPubMedGoogle Scholar
  7. al-Harbi MM, Qureshi S, Ahmed MM et al (1994) Studies on the antiinflammatory, antipyretic and analgesic activities of santonin. Jpn J Pharmacol 64(3):135–139CrossRefPubMedGoogle Scholar
  8. Amorim HR, Gil da Costa RM, Lopes C et al (2013) Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol 43:559–579CrossRefPubMedGoogle Scholar
  9. Andersen TG, Quiñonero López C, Manczak T et al (2016) Thapsigargin from Thapsia L. to mipsagargin. Molecules 20:6113–6127CrossRefGoogle Scholar
  10. Arantes FF, Barbosa LC, Maltha CR et al (2010) Synthesis of novel α-santonin derivatives as potential cytotoxic agents. Eur J Med Chem 45(12):6045–6051. https://doi.org/10.1016/j.ejmech.2010.10.003 CrossRefPubMedGoogle Scholar
  11. Barrera PA, Jimenez-Ortiz V, Tonn C et al (2008) Natural sesquiterpene lactones are active against Leishmania mexicana. J Parasitol 94(5):1143–1149. https://doi.org/10.1645/GE-1501.1 CrossRefPubMedGoogle Scholar
  12. Birladeanu L (2003) The stories of santonin and santonic acid. Angew Chem Int Ed Engl 42(11):1202–1208CrossRefPubMedGoogle Scholar
  13. Boulanger D, Brouillette E, Jaspar F et al (2007) Helenalin reduces Staphylococcus aureus infection in vitro and in vivo. Vet Microbiol 119:330–338CrossRefPubMedGoogle Scholar
  14. Butturini E, Di Paola R, Suzuki H et al (2014) Costunolide and dehydrocostuslactone, two natural sesquiterpene lactones, ameliorate the inflammatory process associated to experimental pleurisy in mice. Eur J Pharmacol 730(1):107–115CrossRefPubMedGoogle Scholar
  15. Chadwick M, Trewin H, Gawthrop F et al (2013) Sesquiterpenoid lactones: benefits to plants and people. Int J Mol Sci 14:12780–12805. https://doi.org/10.3390/ijms140612780 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chaturvedi D (2011) Sesquiterpene lactones: structural diversity and their biological activities. In: Tiwari VK, Mishra BB (eds) Opportunity, challenge and scope of natural products in medicinal chemistry. Research Signpost, Kerala, pp 313–334. ISBN: 978-81-308-0448-4Google Scholar
  17. Cheon YH, Song MJ, Kim JY et al (2014) Costunolide inhibits osteoclast differentiation by suppressing c-Fos transcriptional activity. Phytother Res 28(4):586–592CrossRefPubMedGoogle Scholar
  18. Cho JY, Kim AR, Jung JH et al (2004) Cytotoxic and proapoptotic activities of cynaropicrin, a sesquiterpene lactone, on the viability of leukocyte cancer cell lines. Eur J Pharmacol 492(2–3):85–94CrossRefPubMedGoogle Scholar
  19. Choi JH, Lee KT (2009) Costunolide-induced apoptosis in human leukemia cells: involvement of c-Jun N-terminal kinase activation. Biol Pharm Bull 32(10):1803–1808CrossRefPubMedGoogle Scholar
  20. Costantino V, Lobos Gonzalez L, Ibáñez J et al (2016) Dehydroleucodine inhibits tumor growth in a preclinical melanoma model by inducing cell cycle arrest, senescence and apoptosis. Cancer Lett 372:10–23CrossRefPubMedGoogle Scholar
  21. Crespo Ortiz MP, Wei MQ (2012) Antitumour activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol 2012:247597. https://doi.org/10.1155/2012/247597 CrossRefPubMedGoogle Scholar
  22. Czyz M, Lesiak Mieczkowska K, Koprowska K et al (2010) Cell context-dependent activities of parthenolide in primary and metastatic melanoma cells. Br J Pharmacol 160(5):1144–1157CrossRefPubMedPubMedCentralGoogle Scholar
  23. Da Silva CF, Da Gama JB, De Araujo JS et al (2013) Activities of psilostachyin a and cynaropicrin against Trypanosoma cruzi in vitro and in vivo. Antimicrob Agents Chemother 57(11):5307–5305Google Scholar
  24. Das AK (2015) Anticancer effect of antimalarial artemisinin compounds. Ann Med Health Sci Res 5(2):93–102. https://doi.org/10.4103/2141-9248.153609 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Deng XR, Liu ZX, Liu F et al (2013) Holotransferrin enhances selective anticancer activity of artemisinin against human hepatocellular carcinoma cells. J Huazhong Univ Sci Technolog Med Sci 33(6):862–865CrossRefPubMedGoogle Scholar
  26. Dong GZ, Shim AR, Hyeon JS et al (2015) Inhibition of Wnt/β-catenin pathway by dehydrocostus lactone and costunolide in colon cancer cells. Phytother Res 29(5):680–686CrossRefPubMedGoogle Scholar
  27. Eliza J, Daisy P, Ignacimuthu S et al (2009) Normo-glycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.) Sm. in streptozotocin-induced diabetic rats. Chem Biol Interact 179(2–3):329–334CrossRefPubMedGoogle Scholar
  28. Eliza J, Daisy P, Ignacimuthu S (2010) Antioxidant activity of costunolide and eremanthin isolated from Costus speciosus (Koen ex. Retz) Sm. Chem Biol Interact 188(3):467–472. https://doi.org/10.1016/j.cbi.2010.08.002 CrossRefPubMedGoogle Scholar
  29. Emerdorfer F, Bellato F, Noldin VF et al (2005) Antispasmodic effect of fractions and cynaropicrin from Cynara scolymus on Guinea pig ileum. Biol Pharm Bull 28(5):902–904CrossRefGoogle Scholar
  30. Fischer NH (1990) Sesquiterpene lactones: biogenesis and biomimetic transformations. In: Towers G, Towers H (eds) Biochemistry of the mevalonic acid pathway to terpenoids. Plenum Press, New York, pp 161–201CrossRefGoogle Scholar
  31. Fischer NH, Oliver EJ, Fischer HD (1979) The biogenesis and chemistry of sesquiterpene lactones. In: Herz W, Grisebach H, Kirby GW (eds) Progress in chemistry of organic natural products, vol 38. Springer, New York, pp 47–390Google Scholar
  32. Ghaffarifar F, Esavand Heydani F, Dalimi A et al (2015) Evaluation of apoptotic and antileishmanial activities of artemisinin on promastigotes and BALB/C mice infected with Leishmania major. Iran J Parasitol 10(2):258–267PubMedPubMedCentralGoogle Scholar
  33. Grippo AA, Hall IH, Kiyokawa H et al (1992) The cytotoxicity of helenalin, its mono and difunctional esters, and related sesquiterpene lactones in murine and human tumour cells. Drug Des Discov 8(3):191–206PubMedGoogle Scholar
  34. Guardia T, Juarez AO, Guerreiro E et al (2003) Antiinflammatory activity and effect on gastric acid secretion of dehydroleucodine isolated from Artemisia douglasiana. J Ethnopharmacol 88(2–3):195–198CrossRefPubMedGoogle Scholar
  35. Gunn EJ, Williams JT, Huynh DT et al (2011) The natural products parthenolide and andrographolide exhibit anticancer stem cell activity in multiple myeloma. Leuk Lymphoma 52(6):1085–1097CrossRefPubMedGoogle Scholar
  36. Heywood VH, Harbone JB, Turner BL (1977) An overture to the Compositae. In: Heywood JB, Harbone JB, Turner BL (eds) The biology and chemistry of the Compositae, vol 1. Academic Press, New York/London, pp 1–20Google Scholar
  37. Hohmann M, Longhi-Balbinot D, Guazelli C et al (2016) Sesquiterpene lactones: structural diversity and perspectives as anti-inflammatory molecules. In: Atta-ur-Rahman FRS (ed) Studies in natural products chemistry: bioactive natural products, vol 49. Elsevier, Amsterdam, pp 313–334Google Scholar
  38. Hua P, Zhang G, Zhang Y et al (2016) Costunolide induces G1/S phase arrest and activates mitochondrial-mediated apoptotic pathways in SK-MES 1 human lung squamous carcinoma cells. Oncol Lett 11(4):2780–2786CrossRefPubMedPubMedCentralGoogle Scholar
  39. Inspyr Therapeutics Inc. (Texas, USA) (2016) Inspyr Therapeutics announces mipsagargin Ph 2 trial for patients with clear cell renal cell carcinoma expressing PSMA. http://www.inspyrtx.com/news/press-releases/detail/625/inspyr-therapeutics-announces-mipsagargin-ph-2-trial-for. Accessed 18 Aug 2016
  40. Itoigawa M, Takeya K, Furukawa H et al (1987) Mode of cardiotonic action of helenalin, a sesquiterpene lactone, on Guinea pig ventricular myocardium. J Cardiovasc Pharmacol 9(2):193–201CrossRefPubMedGoogle Scholar
  41. Izumi E, Morello LG, Ueda-Nakamura T et al (2008) Trypanosoma cruzi: antiprotozoal activity of parthenolide obtained from Tanacetum parthenium (L.) Schultz Bip. (Asteraceae, Compositae) against epimastigote and amastigote forms. Exp Parasitol 118(3):324–330CrossRefPubMedGoogle Scholar
  42. Jimenez-Ortiz V, Brengio SD, Giordano O et al (2005) The trypanocidal effect of sesquiterpene lactones helenalin and mexicanin on cultured epimastigotes. J Parasitol 91(1):170–174CrossRefPubMedGoogle Scholar
  43. Khazir J, Singh PP, Reddy DM et al (2013) Synthesis and anticancer activity of novel spiro-isoxazoline and spiro-isoxazolidine derivatives of α-santonin. Eur J Med Chem 63:279–289. https://doi.org/10.1016/j.ejmech.2013.01.003 CrossRefPubMedGoogle Scholar
  44. Kim J, Cheon Y, Yoon KH et al (2014) Parthenolide inhibits osteoclast differentiation and bone resorbing activity by down-regulation of NFATc1 induction and c-Fos stability, during RANKL-mediated osteoclastogenesis. BMB Rep 47(8):451–456CrossRefPubMedPubMedCentralGoogle Scholar
  45. Knudsmark Jessing K, Duke S (2014) Potential ecological roles of artemisinin produced by Artemisia annua L. J Chem Ecol. https://doi.org/10.1007/s10886-014-0384-6
  46. Kweon SH, Kim KT, Hee Hong J et al (2011) Synthesis of C (6)-epimer derivatives of diacetoxy acetal derivative of santonin and their inducing effects on HL-60 leukemia cell differentiation. Arch Pharm Res 34(2):191–198. https://doi.org/10.1007/s12272-011-0202-4 CrossRefPubMedGoogle Scholar
  47. Lezama Dávila CM, Satoskar AR, Úc Encalada M et al (2007) Leishmanicidal activity of artemisinin, deoxoartemisinin, artemether and arteether. Nat Prod Comm 2(1):1–4Google Scholar
  48. Lin X, Shijun Z, Renbin H et al (2014) Helenalin attenuates alcohol-induced hepatic fibrosis by enhancing ethanol metabolism, inhibiting oxidative stress and suppressing HSC activation. Fitoterapia 95:203–213CrossRefPubMedGoogle Scholar
  49. Lin X, Peng Z, Su C (2016) Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone. Int J Mol Sci 16(5):10888–10906Google Scholar
  50. Liu YH (2013) Progress in the research of structure and pharmacological activity of parthenolide (review). Chin J Pharm Biotechnol 20(6):586–589Google Scholar
  51. Liu CY, Chang HS, Chen IS et al (2011) Costunolide causes mitotic arrest and enhances radiosensitivity in human hepatocellular carcinoma cells. Radiat Oncol 6:56. https://doi.org/10.1186/1748-717X-6-56 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lone SH, Bhat KA, Khuroo MA (2015) Arglabin: from isolation to antitumor evaluation. Chem Biol Interact 240:180–198CrossRefPubMedGoogle Scholar
  53. Macías FA, Santana A, Durán AG et al (2013) Guaianolides for multipurpose molecular design. In: Beck J, Coats J, Duke S, Koivunen M (eds) Pest management with natural products, vol 1141. ACS, New York, pp 167–188. https://doi.org/10.1021/bk-2013-1141.ch012 CrossRefGoogle Scholar
  54. Mahalingam D, Wilding G, Denmeade S et al (2016) Mipsagargin, a novel thapsigargin-based PSMA-activated prodrug: results of a first-in-man phase I clinical trial in patients with refractory, advanced or metastatic solid tumours. Br J Cancer 114(9):986–994CrossRefPubMedPubMedCentralGoogle Scholar
  55. Mathema VB, Koh Y, Thakuri BC et al (2012) Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and antiinflammatory activities. Inflammation 35(2):560–565. https://doi.org/10.1007/s10753-011-9346 CrossRefPubMedGoogle Scholar
  56. Mustafi S, Veisaga ML, López LA et al (2015) A novel insight into dehydroleucodine mediated attenuation of Pseudomonas aeruginosa virulence mechanism. Biomed Res Int 2015:216097. doi.org/10.1155/2015/216097CrossRefPubMedPubMedCentralGoogle Scholar
  57. Newman DJ, Cragg G (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661. https://doi.org/10.1021/acs.jnatprod.5b01055 CrossRefPubMedGoogle Scholar
  58. Nhu TQ, Christensen SB (2015) Thapsigargin, origin, chemistry, structure activity relationship and prodrug development. Curr Pharm Des 21:5501–5517CrossRefGoogle Scholar
  59. Onozato T, Nakamura CV, Garcia Cortez DA et al (2009) Tanacetum vulgare: Antiherpes virus activity of crude extract and the purified compound parthenolide. Phytother Res 23(6):791–796CrossRefPubMedGoogle Scholar
  60. Ordóñez PE, Sharma KK, Bystrom LM et al (2016) Dehydroleucodine, a sesquiterpene lactone from Gynoxys verrucosa, demonstrates cytotoxic activity against human leukemia cells. J Nat Prod 79(4):691–696. https://doi.org/10.1021/acs.jnatprod.5b00383 CrossRefPubMedGoogle Scholar
  61. Padilla Gonzalez GF, Antunes dos Santos F, Batista Da Costa F (2016) Sesquiterpene lactones: more than protective plant compounds with high toxicity. CRC Crit RevPlant Sci 35(1):18–37CrossRefGoogle Scholar
  62. Parada Turska J, Paduch R, Majdan M et al (2007) Antiproliferative activity of parthenolide against three human cancer cell lines and human umbilical vein endothelial cells. Pharmacol Rep 59(2):233–237PubMedGoogle Scholar
  63. Picman A (1986) Biological activities of sesquiterpene lactones. Biochem Syst Ecol 14(3):255–281CrossRefGoogle Scholar
  64. Rasul A, Bao R, Malhi M et al (2013) Induction of apoptosis by costunolide in bladder cancer cells is mediated through ROS generation and mitochondrial dysfunction. Molecules 18(2):1418–1433CrossRefPubMedGoogle Scholar
  65. Repetto MG, Boveris A (2010) Bioactivity of sesquiterpenes: compounds that protect from alcohol-induced gastric mucosal lesions and oxidative damage. Mini Rev Med Chem 10(7):615–623CrossRefPubMedGoogle Scholar
  66. Rodriguez E, Towers GHN, Mitchell JC (1976) Biological activities of sesquiterpene lactones. Phytochemistry 15:1573–1580CrossRefGoogle Scholar
  67. Roy A, Manikkam R (2015) Cytotoxic impact of costunolide isolated from Costus speciosus on breast cancer via differential regulation of cell cycle - an in-vitro and in-silico approach. Phytother Res 29(10):1532–1539CrossRefPubMedGoogle Scholar
  68. Saeed MEM, Krishna S, Greten HJ et al (2016) Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol Res 110:216–226CrossRefPubMedGoogle Scholar
  69. Schmidt TJ, Brun R, Willuhm G et al (2002) Antitrypanosomal activity of helenalin and some structurally related sesquiterpene lactones. Planta Med 68(8):750–751CrossRefPubMedGoogle Scholar
  70. Sisto F, Scaltrito MM, Masia C et al (2016) In vitro activity of artemisone and artemisinin derivatives against extracellular and intracellular Helicobacter pylori. Int J Antimicrob Agents 48(1):101–105CrossRefPubMedGoogle Scholar
  71. Supornsilchai V, Söder O, Svechnikov K (2006) Sesquiterpene lactone helenalin suppresses Leydig and adrenocortical cell steroidogenesis by inhibiting expression of the steroidogenic acute regulatory protein. Reprod Toxicol 22(4):631–635CrossRefPubMedGoogle Scholar
  72. Tanaka YT, Tanaka K, Kojima H et al (2013) Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin inhibiting the transcription activity of nuclear factor kappa B. Bioorg Med Chem Lett 23(2):518–523CrossRefPubMedGoogle Scholar
  73. Tani S, Fukamiya N, Kiyokawa H et al (1985) Antimalarial agents. 1. Alpha-santonin-derived cyclic peroxide as potential antimalarial agent. J Med Chem 28(11):1743–1744CrossRefPubMedGoogle Scholar
  74. The Society for Medicinal Plant and Natural Product Research (2017) Nobel Prize for the discovery of natural product-derived drugs. https://www.ga-online.org/events-2/ifpvgksc21/Nobel-Prize-for-the-discovery-of-natural-productderived-drugs-. Accessed 8 Aug 2016
  75. Tiuman TS, Ueda-Nakamura T, Garcia Cortez DA et al (2005) Antileishmanial activity of parthenolide, a sesquiterpene lactone isolated from Tanacetum parthenium. Antimicrob Agents Chemother 49(1):176–182CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wang M, Li Q (2015) Parthenolide could become a promising and stable drug with anti-inflammatory effects. Nat Prod Res 29(12):1092–1101CrossRefPubMedGoogle Scholar
  77. Wang Z, Zhao X, Gong X (2016) Costunolide induces lung adenocarcinoma cell line A549 cells apoptosis through ROS (reactive oxygen species)-mediated endoplasmic reticulum stress. Cell Biol Int 40(3):289–297CrossRefPubMedGoogle Scholar
  78. Wendel GH, María AOM, Guzmán JA et al (2008) Antidiarrheal activity of dehydroleucodine isolated from Artemisia douglasiana. Fitoterapia 79(1):1–5CrossRefPubMedGoogle Scholar
  79. Wong HF, Brown GD (2002) Dimeric guaianolides and a fulvenoguaianolide from Artemisia myriantha. J Nat Prod 65:481–486CrossRefPubMedGoogle Scholar
  80. Wu C, Chen F, Rushing JW et al (2006) Antiproliferative activities of parthenolide and golden feverfew extract against three human cancer cell lines. J Med Food 9(1):55–61CrossRefPubMedGoogle Scholar
  81. Yang YI, Kim JH, Lee KT et al (2011) Costunolide induces apoptosis in platinum-resistant human ovarian cancer cells by generating reactive oxygen species. Gynecol Oncol 123(3):588–596CrossRefPubMedGoogle Scholar
  82. Yoshioka H, Mabry TJ, Timmerman B (1973) Sesquiterpene lactones. University of Tokio Press, TokioGoogle Scholar
  83. Zheng H, Chen Y, Zhang J et al (2016) Evaluation of protective effects of costunolide and dehydrocostuslactone on ethanol-induced gastric ulcer in mice based on multi-pathway regulation. Chem Biol Interact 250:68–77CrossRefPubMedGoogle Scholar
  84. Zimmermann S, Oufir M, Leroux A et al (2013) Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei. Bioorg Med Chem 21(22):7202–7209CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de FarmacognosiaBuenos AiresArgentina
  2. 2.CONICET – Universidad de Buenos Aires. Instituto de Química y Metabolismo del Fármaco - CONICET (IQUIMEFA)Buenos AiresArgentina

Personalised recommendations