Advertisement

Characteristics of Ibritumomab as Radionuclide Therapy Agent

  • Hidekazu Kawashima
Chapter
Part of the Resistance to Targeted Anti-Cancer Therapeutics book series (RTACT, volume 18)

Abstract

Ibritumomab tiuxetan was approved by the FDA as the first radiolabeled monoclonal antibody (mAb) for radioimmunotherapy (RIT: a selective internal radiation therapy using radioisotopes conjugated to tumor-directed antibodies or those fragments) in early 2002 and is now widely used for the treatment of B-cell non-Hodgkin’s lymphoma (NHL). This pharmaceutical agent consists of the murine anti-CD20 chimeric IgG1 mAb, ibritumomab, which is covalently conjugated with the chelator tiuxetan, permitting stable binding to metal cations. In the clinic, two kinds of radioisotopes can be coupled to ibritumomab tiuxetan, namely 111In for cancer imaging and 90Y for the targeted cytotoxic therapy. Dual-label protocols (confirmation of the appropriate mAb distribution using 111In-ibritumomab tiuxetan, followed by radiotherapy by 90Y-ibritumomab tiuxetan) can lead to the effective RIT. To better understand how these radiopharmaceuticals achieve “theranostics” (a combination of diagnosis and therapy) against B-cell NHL, the pharmaceutical characteristics of 90Y-/111In-conjugated ibritumomab tiuxetan are outlined in this chapter.

Keywords

Antigen-antibody reaction Radioimmunotherapy β-particle Cytotoxic radiation γ ray In vivo imaging Theranostics 

Abbreviations

%ID/g

% injected dose per gram of tissue

111In

Indium-111

90Y

Yttrium-90

ADCC

Antibody-dependent cellular cytotoxicity

CDC

Complement-dependent cytotoxicity

DTPA

Diethylenetriaminepentaacetic acid

HAMA

Human antimurine antibody

Kd

Dissociation constant

mAb

Monoclonal antibody

MIRD

Medical Internal Radiation Dose

NHL

Non-Hodgkin’s lymphoma

PET

Positron emission tomography

RIT

Radioimmunotherapy

SPECT

Single-photon emission computed tomography

References

  1. 1.
    Thomas Hodgkin SMJ. Medical immortal and uncompromising idealist. Proc (Bayl Univ Med Cent). 2005;18:368–7.CrossRefGoogle Scholar
  2. 2.
    Küppers R, Hansmann ML. The Hodgkin and reed/Sternberg cell. Int J Biochem Cell Biol. 2005;37(3):511–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Bertoni F, Ponzoni M. The cellular origin of mantle cell lymphoma. Int J Biochem Cell Biol. 2007;39(10):1747–53.PubMedCrossRefGoogle Scholar
  4. 4.
    Kridel R, Mottok A, Farinha P, Ben-Neriah S, Ennishi D, Zheng Y, Chavez EA, Shulha HP, Tan K, Chan FC, Boyle M, Meissner B, Telenius A, Sehn LH, Marra MA, Shah SP, Steidl C, Connors JM, Scott DW, Gascoyne RD. Cell of origin of transformed follicular lymphoma. Blood. 2015;126(18):2118–27.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ondrejka SL, Hsi ED. T-cell lymphomas: updates in biology and diagnosis. Surg Pathol Clin. 2016;9(1):131–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Stat Fact Sheets SEER. Non-Hodgkin lymphoma, surveillance, epidemiology, and end results program, presented by National Cancer Institute. NIH. http://seer.cancer.gov/statfacts/html/nhl.html
  7. 7.
    Coleman M, Lammers PE, Ciceri F, Jacobs IA. Role of rituximab and rituximab biosimilars in diffuse large B-cell lymphoma. Clin Lymphoma Myeloma Leuk. 2016;16(4):175–81.PubMedCrossRefGoogle Scholar
  8. 8.
    Karlin L, Coiffier B. Ofatumumab in the treatment of non-Hodgkin’s lymphomas. Expert Opin Biol Ther. 2015;15(7):1085–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Gabellier L, Cartron G. Obinutuzumab for relapsed or refractory indolent non-Hodgkin’s lymphomas. Ther Adv Hematol. 2016;7(2):85–93.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Klein C, Lammens A, Schäfer W, Georges G, Schwaiger M, Mössner E, Hopfner KP, Umaña P, Niederfellner G. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs. 2013;5(1):22–33.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hainsworth JD. Monoclonal antibody therapy in lymphoid malignancies. Oncologist. 2000;5(5):376–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Tomblyn B. Radioimmunotherapy for B-cell non-Hodgkin lymphomas. Cancer Control. 2012;19(3):196–203.CrossRefPubMedGoogle Scholar
  13. 13.
    Read ED, Eu P, Little PJ, Piva TJ. The status of radioimmunotherapy in CD20+ non-Hodgkin’s lymphoma. Target Oncol. 2015;10(1):15–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Skarbnik AP, Smith MR. Radioimmunotherapy in mantle cell lymphoma. Best Pract Res Clin Haematol. 2012;25(2):201–10.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Fink-Bennett DM, Thomas K. 90Y-ibritumomab tiuxetan in the treatment of relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Nucl Med Technol. 2003;31(2):61–8.PubMedGoogle Scholar
  16. 16.
    Karagiannis TC. Comparison of different classes of radionuclides for potential use in radioimmunotherapy. Hell J Nucl Med. 2007;10(2):82–8.PubMedGoogle Scholar
  17. 17.
    Kawashima H. Radioimmunotherapy: a specific treatment protocol for cancer by cytotoxic radioisotopes conjugated to antibodies. Sci World J. 2014;2014:492061.CrossRefGoogle Scholar
  18. 18.
    Deans JP, Li H, Polyak MJ. CD20-mediated apoptosis: signalling through lipid rafts. Immunology. 2002;107(2):176–82.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Stashenko P, Nadler LM, Hardy R, Schlossman SF. Characterization of a human B lymphocyte-specific antigen. J Immunol. 1980;125(4):1678–85.PubMedGoogle Scholar
  20. 20.
    Hanto DW, Frizzera G, Gajl-Peczalska KJ, Sakamoto K, Purtilo DT, Balfour HH Jr, Simmons RL, Najarian JS. Epstein-Barr virus-induced B-cell lymphoma after renal transplantation: acyclovir therapy and transition from polyclonal to monoclonal B-cell proliferation. N Engl J Med. 1982;306(15):913–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Anderson KC, Bates MP, Slaughenhoupt BL, Pinkus GS, Schlossman SF, Nadler LM. Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood. 1984;63(6):1424–33.PubMedGoogle Scholar
  22. 22.
    Hokland P, Ritz J, Schlossman SF, Nadler LM. Orderly expression of B cell antigens during the in vitro differentiation of nonmalignant human pre-B cells. J Immunol. 1985;135(3):1746–51.PubMedGoogle Scholar
  23. 23.
    Tedder TF, Disteche CM, Louie E, Adler DA, Croce CM, Schlossman SF, Saito H. The gene that encodes the human CD20 (B1) differentiation antigen is located on chromosome 11 near the t(11;14)(q13;q32) translocation site. J Immunol. 1989;142(7):2555–9.PubMedGoogle Scholar
  24. 24.
    Bubien JK, Zhou LJ, Bell PD, Frizzell RA, Tedder TF. Transfection of the CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found constitutively in B lymphocytes. J Cell Biol. 1993;121(5):1121–32.PubMedCrossRefGoogle Scholar
  25. 25.
    Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today. 1994;15(9):450–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Uchida J, Lee Y, Hasegawa M, Liang Y, Bradney A, Oliver JA, Bowen K, Steeber DA, Haas KM, Poe JC, Tedder TF. Mouse CD20 expression and function. Int Immunol. 2004;16(1):119–29.PubMedCrossRefGoogle Scholar
  27. 27.
    Valentine MA, Licciardi KA, Clark EA, Krebs EG, Meier KE. Insulin regulates serine/threonine phosphorylation in activated human B lymphocytes. J Immunol. 1993;150(1):96–105.PubMedGoogle Scholar
  28. 28.
    Genot EM, Meier KE, Licciardi KA, Ahn NG, Uittenbogaart CH, Wietzerbin J, Clark EA, Valentine MA. Phosphorylation of CD20 in cells from a hairy cell leukemia cell line. Evidence for involvement of calcium/calmodulin-dependent protein kinase II. J Immunol. 1993;151(1):71–82.PubMedGoogle Scholar
  29. 29.
    Deans JP, Schieven GL, Shu GL, Valentine MA, Gilliland LA, Aruffo A, Clark EA, Ledbetter JA. Association of tyrosine and serine kinases with the B cell surface antigen CD20. Induction via CD20 of tyrosine phosphorylation and activation of phospholipase C-γ1 and PLC phospholipase C-γ2. J Immunol. 1993;151(9):4494–504.PubMedGoogle Scholar
  30. 30.
    Golay J, Cusmano G, Introna M. Independent regulation of c-myc, B-myb, and c-myb gene expression by inducers and inhibitors of proliferation in human B lymphocytes. J Immunol. 1992;149(1):300–8.PubMedGoogle Scholar
  31. 31.
    Kansas GS, Tedder TF. Transmembrane signals generated through MHC class II, CD19, CD20, CD39, and CD40 antigens induce LFA-1-dependent and independent adhesion in human B cells through a tyrosine kinase-dependent pathway. J Immunol. 1991;147(12):4094–102.PubMedGoogle Scholar
  32. 32.
    Clark EA, Shu G. Activation of human B cell proliferation through surface Bp35 (CD20) polypeptides or immunoglobulin receptors. J Immunol. 1987;138(3):720–5.PubMedGoogle Scholar
  33. 33.
    White MW, McConnell F, Shu GL, Morris DR, Clark EA. Activation of dense human tonsilar B cells. Induction of c-myc gene expression via two distinct signal transduction pathways. J Immunol. 1991;146(3):846–53.PubMedGoogle Scholar
  34. 34.
    Rossmann ED, Lundin J, Lenkei R, Mellstedt H, Osterborg A. Variability in B-cell antigen expression: implications for the treatment of B-cell lymphomas and leukemias with monoclonal antibodies. Hematol J. 2001;2(5):300–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu AY, Robinson RR, Murray ED Jr, Ledbetter JA, Hellstrom I, Hellstrom KE. Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J Immunol. 1987;139(10):3521–6.PubMedGoogle Scholar
  36. 36.
    Press OW, Howell-Clark J, Anderson S, Bernstein I. Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood. 1994;83(5):1390–7.PubMedGoogle Scholar
  37. 37.
    Press OW, Farr AG, Borroz KI, Anderson SK, Martin PJ. Endocytosis and degradation of monoclonal antibodies targeting human B-cell malignancies. Cancer Res. 1989;49(17):4906–12.PubMedGoogle Scholar
  38. 38.
    Sato S, Steeber DA, Jansen PJ, Tedder TF. CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J Immunol. 1997;158(10):4662–9.PubMedGoogle Scholar
  39. 39.
    Vlasveld LT, Hekman A, Vyth-Dreese FA, Melief CJ, Sein JJ, Voordouw AC, Dellemijn TA, Rankin EM. Treatment of low-grade non-Hodgkin’s lymphoma with continuous infusion of low-dose recombinant interleukin-2 in combination with the B-cell-specific monoclonal antibody CLBCD19. Cancer Immunol Immunother. 1995;40(1):37–47.PubMedGoogle Scholar
  40. 40.
    Cesano A, Gayko U. CD22 as a target of passive immunotherapy. Semin Oncol. 2003;30(2):253–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Coleman M, Goldenberg DM, Siegel AB, Ketas JC, Ashe M, Fiore JM, Leonard JP. Epratuzumab: targeting B-cell malignancies through CD22. Clin Cancer Res. 2003;9(10):3991s–4s.PubMedGoogle Scholar
  42. 42.
    Delacruz W, Setlik R, Hassantoufighi A, Daya S, Cooper S, Selby D, Brown A. Novel brentuximab vedotin combination therapies show promising activity in highly refractory CD30+ non-Hodgkin lymphoma: a case series and review of the literature. Case Rep Oncol Med. 2016;2016:2596423.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Advani R, Forero-Torres A, Furman RR, Rosenblatt JD, Younes A, Ren H, Harrop K, Whiting N, Drachman JG. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J Clin Oncol. 2009;27(26):4371–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Hariharan K, Chu P, Murphy T, Clanton D, Berquist L, Molina A, Ho SN, Vega MI, Bonavida B. Galiximab (anti-CD80)-induced growth inhibition and prolongation of survival in vivo of B-NHL tumor xenografts and potentiation by the combination with fludarabine. Int J Oncol. 2013;43(2):670–6.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Pillay V, Gan HK, Scott AM. Antibodies in oncology. New Biotechnol. 2011;28(5):518–29.CrossRefGoogle Scholar
  46. 46.
    Kitson SL, Cuccurullo V, Moody TS, Mansi L. Radionuclide antibody-conjugates, a targeted therapy towards cancer. Curr Radiopharm. 2013;6(2):57–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Ross JS, Gray K, Gray GS, Worland PJ, Rolfe M. Anticancer antibodies. Am J Clin Pathol. 2003;119(4):472–85.PubMedCrossRefGoogle Scholar
  48. 48.
    Winter G, Harris WJ. Humanized antibodies. Trends Pharmacol Sci. 1993;14(5):139–43.PubMedCrossRefGoogle Scholar
  49. 49.
    Merluzzi S, Figini M, Colombatti A, Canevari S, Pucillo C. Humanized antibodies as potential drugs for therapeutic use. Adv Clin Pathol. 2000;4(2):77–85.Google Scholar
  50. 50.
    Kuus-Reichel K, Grauer LS, Karavodin LM, Knott C, Krusemeier M, Kay NE. Will immunogenicity limit the use, efficacy, and future development of therapeutic monoclonal antibodies? Clin Diagn Lab Immunol. 1994;1(14):365–72.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Pimm MV. Possible consequences of human antibody responses on the biodistribution of fragments of human, humanized or chimeric monoclonal antibodies: a note of caution. Life Sci. 1994;55(2):PL45–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Teo EC, Chew Y, Phipps C. A review of monoclonal antibody therapies in lymphoma. Crit Rev Oncol Hematol. 2016;97:72–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Davies AJ. Radioimmunotherapy for B-cell lymphoma: Y90 ibritumomab tiuxetan and I131 tositumomab. Oncogene. 2007;26(25):3614–28.PubMedCrossRefGoogle Scholar
  54. 54.
    Brechbiel MW, Gansow OA. Backbone-substituted DTPA ligands for 90Y radioimmunotherapy. Bioconjug Chem. 1991;2(3):187–94.PubMedCrossRefGoogle Scholar
  55. 55.
    Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–45.PubMedGoogle Scholar
  56. 56.
    Ibritumomab tiuxetan (Zevalin) for non-Hodgkin’s lymphoma. Med Lett Drugs Ther. 2002;44(1144):101–2.Google Scholar
  57. 57.
    First radiopharmaceutical for non-Hodgkin’s lymphoma. FDA Consum. 2002;36(3):3.Google Scholar
  58. 58.
    Hagenbeek A, Lewington V. Report of a European consensus workshop to develop recommendations for the optimal use of 90Y-ibritumomab tiuxetan (Zevalin®) in lymphoma. Ann Oncol. 2005;16(5):786–92.PubMedCrossRefGoogle Scholar
  59. 59.
    Lin FI, Iagaru A. Current concepts and future directions in radioimmunotherapy. Curr Drug Discov Technol. 2010;7(4):253–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Barth M, Raetz E, Cairo MS. The future role of monoclonal antibody therapy in childhood acute leukaemias. Br J Haematol. 2012;159(1):3–17.PubMedCrossRefGoogle Scholar
  61. 61.
    Kattah AG, Fervenza FC. Rituximab: emerging treatment strategies of immune-mediated glomerular disease. Expert Rev Clin Immunol. 2012;8(5):413–21.PubMedCrossRefGoogle Scholar
  62. 62.
    Cang S, Mukhi N, Wang K, Liu D. Novel CD20 monoclonal antibodies for lymphoma therapy. J Hematol Oncol. 2012;5:64.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Chinn PC, Leonard JE, Rosenberg J, Hanna N, Anderson DR. Preclinical evaluation of 90Y-labeled anti-CD20 monoclonal antibody for treatment of non-Hodgkin’s lymphoma. Int J Oncol. 1999;15(5):1017–25.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Milenic DE, Brady ED, Brechbiel MW. Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov. 2004;3(6):488–99.PubMedCrossRefGoogle Scholar
  66. 66.
    Wiseman GA, White CA, Sparks RB, Erwin WD, Podoloff DA, Lamonica D, Bartlett NL, Parker JA, Dunn WL, Spies SM, Belanger R, Witzig TE, Leigh BR. Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin radioimmunotherapy for low grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. Crit Rev Oncol Hematol. 2001;39(1–2):181–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Wadas TJ, Wong EH, Weisman GR, Anderson CJ. Coordinating radiometals of copper, gallium, indium, yttrium and zirconium for PET and SPECT imaging of disease. Chem Rev. 2010;110(5):2858–902.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Andersson H, Cederkrantz E, Bäck T, Divgi C, Elgqvist J, Himmelman J, Horvath G, Jacobsson L, Jensen H, Lindegren S, Palm S, Hultborn R. Intraperitoneal α-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab’)2: a phase I study. J Nucl Med. 2009;50(7):1153–60.PubMedCrossRefGoogle Scholar
  69. 69.
    Teiluf K, Seidl C, Blechert B, Gaertner FC, Gilbertz KP, Fernandez V, Bassermann F, Endell J, Boxhammer R, Leclair S, Vallon M, Aichler M, Feuchtinger A, Bruchertseifer F, Morgenstern A, Essler M. α-Radioimmunotherapy with 213Bi-anti-CD38 immunoconjugates is effective in a mouse model of human multiple myeloma. Oncotarget. 2015;6(7):4692–703.PubMedCrossRefGoogle Scholar
  70. 70.
    Bandekar A, Zhu C, Jindal R, Bruchertseifer F, Morgenstern A, Sofou S. Anti-prostate-specific membrane antigen liposomes loaded with 225Ac for potential targeted antivascular α-particle therapy of cancer. J Nucl Med. 2014;55(9):1492–8.CrossRefGoogle Scholar
  71. 71.
    Abbas N, Heyerdahl H, Bruland OS, Borrebæk J, Nesland J, Dahle J. Experimental α-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab. EJNMMI Res. 2011;1(1):18.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Smith T, Crawley JC, Shawe DJ, Gumpel JMSPECT. Using bremsstrahlung to quantify 90Y uptake in Baker’s cysts: its application in radiation synovectomy of the knee. Eur J Nucl Med. 1988;14(9–10):498–503.PubMedCrossRefGoogle Scholar
  73. 73.
    Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot. 2007;65(3):318–27.PubMedCrossRefGoogle Scholar
  74. 74.
    Minarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative 90Y SPECT based on experimental phantom studies. Phys Med Biol. 2008;53(20):5689–703.PubMedCrossRefGoogle Scholar
  75. 75.
    Dancey JE, Shepherd FA, Paul K, Sniderman KW, Houle S, Gabrys J, Hendler AL, Goin JE. Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med. 2000;41(10):1673–81.PubMedGoogle Scholar
  76. 76.
    Press OW. Radiolabeled antibody therapy of B-cell lymphomas. Semin Oncol. 1999;26(Suppl 14):58–65.PubMedGoogle Scholar
  77. 77.
    Wiseman GA, White CA, Witzig TE, Gordon LI, Emmanouilides C, Raubitschek A, Janakiraman N, Gutheil J, Schilder RJ, Spies S, Silverman DH, Grillo-López AJ. Radioimmunotherapy of relapsed non-Hodgkin’s lymphoma with Zevalin, a 90Y-labeled anti-CD20 monoclonal antibody. Clin Cancer Res. 1999;5(Suppl 10):3281s–6s.PubMedGoogle Scholar
  78. 78.
    Zelenetz AD. Radioimmunotherapy for lymphoma. Curr Opin Oncol. 1999;11:375–80.PubMedCrossRefGoogle Scholar
  79. 79.
    Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med. 2010;40(2):122–35.PubMedCrossRefGoogle Scholar
  80. 80.
    Shen S, DeNardo GL, Yuan A, DeNardo DA, DeNardo SJ. Planar gamma camera imaging and quantitation of yttrium-90 bremsstrahlung. J Nucl Med. 1994;35(8):1381–9.PubMedGoogle Scholar
  81. 81.
    Rong X, Frey EC. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT. Med Phys. 2013;40(8):082504.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Paganelli G, Bartolomei M, Ferrari M, Cremonesi M, Broggi G, Maira G, Sturiale C, Grana C, Prisco G, Gatti M, Caliceti P, Chinol M. Pre-targeted locoregional radioimmunotherapy with 90Y biotin in glioma patients: phase I study and preliminary therapeutic results. Cancer Biother Radiopharm. 2001;16(3):227–35.PubMedCrossRefGoogle Scholar
  83. 83.
    van Hemert FJ, Sloof GW, Schimmel KJ, Vervenne WL, van Eck-Smrr BL, Busemann-Sokole E. Radiopharmaceutical management of 90Y/111In labeled antibodies: shielding and quantification during preparation and administration. Ann Nucl Med. 2006;20(8):575–81.PubMedCrossRefGoogle Scholar
  84. 84.
    Steiner M, Neri D. Antibody-radionuclide conjugates for cancer therapy: historical considerations and new trends. Clin Cancer Res. 2011;17(20):6406–16.PubMedCrossRefGoogle Scholar
  85. 85.
    de Jong M, Bakker WH, Krenning EP, Breeman WA, van der Pluijm ME, Bernard BF, Visser TJ, Jermann E, Béhé M, Powell P, Mäcke HR. Yttrium-90 and indium-111 labelling, receptor binding and biodistribution of [DOTA0,D-Phe1,Tyr3]octreotide, a promising somatostatin analogue for radionuclide therapy. Eur J Nucl Med. 1997;24(4):368–71.PubMedGoogle Scholar
  86. 86.
    Dahle J, Abbas N, Bruland ØS, Larsen RH. Toxicity and relative biological effectiveness of alpha emitting radioimmunoconjugates. Curr Radiopharm. 2011;4(4):321–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Carroll V, Demoin DW, Hoffman TJ, Jurisson SS. Inorganic chemistry in nuclear imaging and radiotherapy: current and future directions. Radiochim Acta. 2012;100(8–9):653–67.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Silvester DJ, Waters SL. Dosimetry of radiolabelled blood cells. Int J Nucl Med Biol. 1983;10(2–3):141–4.PubMedCrossRefGoogle Scholar
  89. 89.
    Cornelissen B, Waller A, Able S, Vallis KA. Molecular radiotherapy using cleavable radioimmunoconjugates that target EGFR and γH2AX. Mol Cancer Ther. 2013;12(11):2472–82.PubMedCrossRefGoogle Scholar
  90. 90.
    Ngo Ndjock Mbong G, Lu Y, Chan C, Cai Z, Liu P, Boyle AJ, Winnik MA, Reilly RM. Trastuzumab labeled to high specific activity with 111In by site-specific conjugation to a metal-chelating polymer exhibits amplified auger electron-mediated cytotoxicity on HER2-positive breast cancer cells. Mol Pharm. 2015;12(6):1951–60.PubMedCrossRefGoogle Scholar
  91. 91.
    Gao C, Leyton JV, Schimmer AD, Minden M, Reilly RM. Auger electron-emitting 111In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123+/CD131 phenotype of leukemia stem cells. Appl Radiat Isot. 2016;110:1–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Coulot J, Camara-Clayette V, Ricard M, Lavielle F, Velasco V, Drusch F, Bosq J, Schlumberger M, Ribrag V. Imaging of the distribution of 90Y-ibritumomab tiuxetan in bone marrow and comparison with pathology. Cancer Biother Radiopharm. 2007;22(5):665–71.PubMedCrossRefGoogle Scholar
  93. 93.
    Krasner C, Joyce RM. Zevalin: 90Yttrium labeled anti-CD20 (ibritumomab tiuxetan), a new treatment for non-Hodgkin’s lymphoma. Curr Pharm Biotechnol. 2001;2(4):341–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Gordon LI, Witzig TE, Wiseman GA, Flinn IW, Spies SS, Silverman DH, Emmanouilides C, Cripe L, Saleh M, Czuczman MS, Olejnik T, White CA, Grillo-López AJ. Yttrium 90 ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory low-grade non-Hodgkin’s lymphoma. Semin Oncol. 2002;29(1 Suppl 2):87–92.PubMedCrossRefGoogle Scholar
  95. 95.
    Wagner HN Jr, Wiseman GA, Marcus CS, Nabi HA, Nagle CE, Fink-Bennett DM, Lamonica DM, Conti PS. Administration guidelines for radioimmunotherapy of non-Hodgkin’s lymphoma with 90Y-labeled anti-CD20 monoclonal antibody. J Nucl Med. 2002;43(2):267–72.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Juweid ME. Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma: from clinical trials to clinical practice. J Nucl Med. 2002;43(11):1507–29.PubMedGoogle Scholar
  97. 97.
    Otte A. Diagnostic imaging prior to 90Y-ibritumomab tiuxetan (Zevalin) treatment in follicular non-Hodgkin’s lymphoma. Hell J Nucl Med. 2008;11(1):12–5.PubMedGoogle Scholar
  98. 98.
    Annex I Summary of Product Characteristics: Zevalin 1.6 mg/ml kit for radiopharmaceutical preparations for infusion, disclosed by European Medical Agency. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000547/WC500049469.pdf
  99. 99.
    Chamarthy MR, Williams SC, Moadel RM. Radioimmunotherapy of non-Hodgkin’s lymphoma: from the ‘magic bullets’ to ‘radioactive magic bullets. Yale J Biol Med. 2011;84(4):391–407.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol. 2007;34(7):757–78.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–60.PubMedCrossRefGoogle Scholar
  102. 102.
    Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23(9):1126–36.PubMedCrossRefGoogle Scholar
  103. 103.
    Schneider DW, Heitner T, Alicke B, Light DR, McLean K, Satozawa N, Parry G, Yoo J, Lewis JS, Parry R. In vivo biodistribution, PET imaging, and tumor accumulation of 86Y- and 111In-antimindin/RG-1, engineered antibody fragments in LNCaP tumor-bearing nude mice. J Nucl Med. 2009;50(3):435–43.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Adams GP, Shaller CC, Dadachova E, Simmons HH, Horak EM, Tesfaye A, Klein-Szanto AJ, Marks JD, Brechbiel MW, Weiner LM. A single treatment of yttrium-90-labeled CHX-A″-C6.5 diabody inhibits the growth of established human tumor xenografts in immunodeficient mice. Cancer Res. 2004;64(17):6200–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Maleki LA, Baradaran B, Majidi J, Mohammadian M, Shahneh FZ. Future prospects of monoclonal antibodies as magic bullets in immunotherapy. Hum Antibodies. 2013;22(1–2):9–13.PubMedCrossRefGoogle Scholar
  106. 106.
    Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal JF. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol. 2006;24(5):823–34.PubMedCrossRefGoogle Scholar
  107. 107.
    Sharkey RM, Karacay H, Litwin S, Rossi EA, McBride WJ, Chang CH, Goldenberg DM. Improved therapeutic results by pretargeted radioimmunotherapy of non-Hodgkin’s lymphoma with a new recombinant, trivalent, anti-CD20, bispecific antibody. Cancer Res. 2008;68(13):5282–90.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Sharkey RM, Karacay H, Johnson CR, Litwin S, Rossi EA, McBride WJ, Chang CH, Goldenberg DM. Pretargeted versus directly targeted radioimmunotherapy combined with anti-CD20 antibody consolidation therapy of non-Hodgkin lymphoma. J Nucl Med. 2009;50(3):444–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Radioisotope Research CenterKyoto Pharmaceutical UniversityYamashina-ku, KyotoJapan

Personalised recommendations