Advertisement

The Genesis of Children’s Mathematical Thinking in Their Early Years

  • Götz Krummheuer
Chapter

Abstract

In a longitudinal study about the development of mathematical thinking of children ages 4–6, a first comparative analysis of the participation patterns of one child over this period of time in different peer situations of mathematical play and exploration has been completed. The theoretical background and the accomplished results will be presented.

Keywords

Development of mathematical thinking Longitudinal study Interactionism Situational perspective Collective argumentation Mathematics learning support system (MLSS) Framing Early Steps in Mathematical Thinking (erStMaL) Narrative discourse Narratory discourse Narrative mode of thinking 

References

  1. Acar Bayraktar, E., Hümmer, A.-M., Huth, M., Münz, M., & Reimann, M. (2011). Forschungsmethodischer Rahmen der Projekte erStMaL und MaKreKi. In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Mathematikdidaktische Forschung am “Center for Individual Development and Adaptive Education”. Grundlagen und erste Ergebnisse der Projekte erStMaL und MaKreKi (Bd. 1) (Vol. 1). Münster/New York/München/Berlin: Waxmann.Google Scholar
  2. Brandt, B., & Krummheuer, G. (2015). Die Entwicklung der Zählkompetenz bei einem Kind mit einer spezifischen Sprachentwicklungstörung im Alter von drei bis sechs Jahren. In C. Huf & I. Schnell (Eds.), Inklusive Bildung in Kita und Grundschule (pp. 133–162). Stuttgart, Germany: Kohlhammer.Google Scholar
  3. Brandt, B., Krummheuer, G., & Vogel, R. (Eds.). (2011). Die Projekte erStMaL und MaKreKi. Mathematikdidaktische Forschung am “Center for Individual Developemnt and Adaptive Education” (IDEA). Münster/New York/München/Berlin: Waxmann.Google Scholar
  4. Bruner, J. (1982). The formats of language acquisition. American Journal of Semiotics, 1, 1–16.CrossRefGoogle Scholar
  5. Bruner, J. (1983). Child’s talk. Learning to use language. Oxford, UK: Oxford University Press.Google Scholar
  6. Bruner, J. (1985). The role of interaction formats in language acquisition. In J. P. Forgas (Ed.), Language and social situations. New York: Springer.Google Scholar
  7. Bruner, J. (1986). Actual minds, possible worlds. Cambridge, MA: Harvard University Press.Google Scholar
  8. Bruner, J. (1990). Acts of meaning. Cambridge, MA/London: Harvard University Press.Google Scholar
  9. Bruner, J. (1996). The culture of education. Cambridge, MA: Harvard University Press.Google Scholar
  10. Goffman, E. (1963). Behavior in public places. Notes on the social organization of gatherings. New York: The Free Press.Google Scholar
  11. Goffman, E. (1974). Frame analysis. An essay on the organisation of experience. Cambridge, MA: Harvard University Press.Google Scholar
  12. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229–269). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  13. Krummheuer, G. (1999). The narrative character of argumentative mathematics classroom interaction in primary education. Paper presented at the European Research in Mathematics Education I, Osnabrück, Germany. http://www.fmd.uni-osnabrueck.de/ebooks/erme/cerme1-proceedings/cerme1proceedings.html
  14. Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom. Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60–82.CrossRefGoogle Scholar
  15. Krummheuer, G. (2009). Inscription, narration and diagrammatically based argumentation. The narrative accounting practices in the primary school mathematics lesson. In W.-M. Roth (Ed.), Mathematical representation at the interface of the body and culture (pp. 219–243). Charlotte, NC: Information Age Publishing.Google Scholar
  16. Krummheuer, G. (2011a). Representation of the notion “learning-as-participation” in everyday situations of mathematics classes. Zentralblatt für Didaktik der Mathematik (ZDM), 43(1/2), 81–90.CrossRefGoogle Scholar
  17. Krummheuer, G. (2011b). Die Interaktionsanalyse. In F. Heinzel (Ed.), Methoden der Kindheitsforschung. Weinheim/München: Juventa.Google Scholar
  18. Krummheuer, G. (2012). The “non-canonical” solution and the “improvisation” as conditions for early years mathematics learning processes: The concept of the “interactional niche in the development of mathematical thinking” (NMT). Journal für Mathematik-Didaktik, 33(2), 317–338. submitted to the Special Issue “Early Mathematics Education.CrossRefGoogle Scholar
  19. Krummheuer, G. (2013). The relationship between diagrammatic argumentation and narrative argumentation in the context of the development of mathematical thinking in the early years. Educational Studies in Mathematics, 84(2), 249–265. https://doi.org/10.1007/s10649–10013–19471-10649CrossRefGoogle Scholar
  20. Krummheuer, G. (2014a). Interactionist and ethnomethodological approaches in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 313–316). Dordrecht/Heidelberg, New York/London: Springer.Google Scholar
  21. Krummheuer, G. (2014b). The relationship between cultural expectation and the local realization of a mathematics learning environment. In U. Kortenkamp, B. Brandt, C. Benz, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning. Selected papers of the POEM 2012 conference. New York/Heidelberg/Dordrecht/London: Springer.Google Scholar
  22. Krummheuer, G. (2015). Methods for reconstructing processes of argumentation and participation in primary mathematics classroom interaction. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education. Examples of methodology and methods (pp. 51–74). Dordrecht/Heidelberg/New York/London: Springer.Google Scholar
  23. Lave, W., & Wenger, E. (1991). Situated learning. Legitimate peripheral participation. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  24. Vogel, R. (2014). Mathematical situations of play and exploration as an empirical research instrument. In C. Benz, B. Brandt, U. Kortenkamp, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning—Selected papers of the POEM 2012 conference (pp. 223–236). New York: Springer.Google Scholar
  25. Vogel, R., & Huth, M. (2010). “...und der Elephant in die MItte” – Rekonstruktion mathematischer Konzepte von Kindern in Gesprächssituationen. In B. Brandt, M. Fetzer, & M. Schütte (Eds.), Auf den Spuren Interpretativer Unterrichtsforschung in der Mathematikdidaktik. Götz Krummheuer zum 60. Geburtstag. Münster/New York/München/Berlin: Waxmann.Google Scholar
  26. Webster, N. (1983). In J. L. McKechnie (Ed.), Webster’s new twentieth century dictionary. Unabridged (2nd ed.). New York: Simon and Schuster.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Götz Krummheuer
    • 1
  1. 1.Goethe University Frankfurt am Main, Institut für Didaktik der Mathematik und der InformatikFrankfurt am MinGermany

Personalised recommendations