Advertisement

How Can a Father Be Supportive for the Mathematics Learning Process of a Child? – The Relationship Between Scaffolding and the Interactional Niche in the Development of Mathematical Learning in the Familial Context

  • Ergi Acar Bayraktar
Chapter

Abstract

This chapter focuses on a father-child interaction during block play, which shapes the child’s mathematical experiences and mathematics learning process. With the aim of analyzing and discussing such interaction process in detail, the negotiation of taken-as-shared meanings during block play is observed. For this, the concept of the interactional niche in the development of mathematical thinking is used. This concept sheds light on questions of how a father, as one of the main parts of family systems, uses some scaffolding functions and how such interaction process enables a child to learn mathematics in a play situation. The result demonstrates that the play with father takes place as a social act for the child, and the interaction process with father provides the child an effective mathematics learning process, and an interactional niche in the familial context emerges. It can be concluded that familial systems have crucial effects on the scaffolding process.

Keywords

Family interactional niche Father Scaffolding Block play Early childhood Familial context Geometry Interaction Scaffold learning Family systems Leeway of participation Negotiation of taken-as-shared meanings 

References

  1. Acar Bayraktar, E. (2014a). The reflection of spatial thinking on the interactional niche in the family. In C. Benz, B. Brandt, U. Kortenkamp, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning. Selected papers of the POEM 2012 conference (pp. 85–107). New York: Springer.Google Scholar
  2. Acar Bayraktar, E. (2014b). Interactional niche of spatial thinking of children in the familial context (Interaktionale Nische der mathematischen Raumvorstellung den Vorschulkindern im familialen Kontext). In E. Niehaus, R. Rasch, J. Roth, H.-S. Siller, & W. Zillmer (Eds.), Beiträge zum Mathematikunterricht 2014 (pp. 93–96). Münster, Germany: WTM Verlag.Google Scholar
  3. Acar Bayraktar, E. (2016). Negotiating family members in a block play. In T. Meaney, L. Troels, A. Wernberg, O. Helenius, & M. L. Johansson (Eds.), Mathematics education in the early years, results from the POEM2 conference 2014 (pp. 57–80). New York: Springer.Google Scholar
  4. Acar Bayraktar, E., & Krummheuer, G. (2011). Die Thematisierung von Lagebeziehungen und Perspektiven in zwei familialen Spielsituationen. Erste Einsichten in die Struktur “interaktionaler Nischen mathematischer Denkentwicklung” im familialen Kontext. In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Die Projekte erStMaL und MaKreKi. Mathematikdidaktische Forschung am “Centre for Individual Development and Adaptive Education” (IDeA) Bd 1 (pp. 135–174). Münster, Germany: Waxmann.Google Scholar
  5. Anghileri, J. (2006). Scaffolding practices that enhance mathematics learning. Journal of Mathematics Teacher Education, 9, 33–52.CrossRefGoogle Scholar
  6. Bakker, A., Smit, J., & Wegerif, R. (2015). Scaffolding and dialogic teaching in mathematics education: Introduction and review. ZDM Mathematics Education, 47(7), 1047–1065.CrossRefGoogle Scholar
  7. Belland, B. R., Walker, A. E., Olsen, M. W., & Leary, H. (2015). A pilot meta-analysis of computer-based scaffolding in STEM education. Educational Technology & Society, 18(1), 183–197.Google Scholar
  8. Bibok, M. B., Carpendale, J. I. M., & Müller, U. (2009). Parental scaffolding and the development of executive function. In C. Lewis & J. I. M. Carpendale (Eds.), Social interaction and the development of executive function, New directions in child and adolescent development (Vol. 123, pp. 17–34). New York: Jossey Bass.Google Scholar
  9. Blumer, H. (1969). Symbolic interactionism. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  10. Boekaerts, M. (1997). Self-regulated learning: A new concept embraced by researchers, policy makers, educators, teachers, and students on ResearchGate, the professional network for scientists. Learning and Instruction, 7(2), 161–186.CrossRefGoogle Scholar
  11. Bornstein, M. H., & Sawyer, J. (2008). Family systems. In K. MacCartney & D. Philips (Eds.), Blackwell handbook of early childhood development (pp. 381–391). Oxford, UK: Blackwell.Google Scholar
  12. Brandt, B., & Tiedemann, K. (2010). Learning mathematics within family discourses. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp.). Lyon, France: Institut National de Recherche Pédagogique. ISBN.Google Scholar
  13. Bruner, J. (1983). Play, thought, and language. Peabody Journal of Education, 60(3), 60–69.CrossRefGoogle Scholar
  14. Bruner, J. (1996). The culture of education. Cambridge, MA: Harvard University Press.Google Scholar
  15. Clements, D. H., & Sarama, J. (2014). Learning and teaching early math. The learning trajectories approach, Studies in mathematical thinking and learning series (2nd ed.). New York/London: Routledge.CrossRefGoogle Scholar
  16. Cobb, P., & Bauersfeld, H. (1995). The emergence of mathematical meaning. Interaction in classroom cultures. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  17. Collins, W. A., Madsen, S. D., & Susman-Stillman, A. (2002). Parenting during middle childhood. In M. H. Bornstein (Ed.), Handbook of parenting. Volume 1. Children and parenting (2nd ed., pp. 73–101). Mahwah, NJ/London: Lawrence Erlbaum.Google Scholar
  18. Connecticut State Board of Education. (2007). Early childhood: A guide to early childhood program development. Hartford, CT: Connecticut State Board of Education.Google Scholar
  19. Ernest, P. (2010). Reflections on theories of learning. In B. Sriraman & L. English (Eds.), Theories of mathematics education: Seeking new frontiers (pp. 39–46). Berlin, Germany: Springer.CrossRefGoogle Scholar
  20. Fisher, K. R., Hirsh-Pasek, K., Golinkoff, R. M., & Gryfe, S. G. (2008). Conceptual split? Parents’ and experts’ perceptions of play in the 21st century. Journal of Applied Developmental Psychology, 29, 305–316.CrossRefGoogle Scholar
  21. Garfinkel, H. (1972). Remarks on ethnomethodology. In J. J. Gumperz & D. Hymes (Eds.), Directions in sociolinguistics: The ethnography of communication (pp. 301–324). New York: Holt.Google Scholar
  22. Hammond, S. I., & Müller, U. (2012). The effects of parental scaffolding on preschoolers’ executive function. Developmental Psychology, 48(1), 271–281.CrossRefGoogle Scholar
  23. Hawighorst, B. (2005). Parents’ views on mathematics and the learning of mathematics—An intercultural comparative study. ZDM Mathematics Education, 37(2), 90–100.CrossRefGoogle Scholar
  24. KMK (Kultusministerkonferenz). (2004). Bildungsstandards im Fach Mathematik für den Primarbereich (Jahrgangsstufe 4). Beschluss der Kultusministerkonferenz vom 15.10.2004. [Educational standards in mathematics at the primary level (grade 4). Resolution of the standing conference of the ministers of education and cultural affairs]. Retrieved from http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2004/2004_10_15-Bildungsstandards-Mathe-Primar.pdf. [2016–12-12].
  25. Krummheuer, G. (2014). The relationship between cultural expectation and the local realization of a mathematics learning environment. In C. Benz, B. Brandt, U. Kortenkamp, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning—Selected papers of the POEM 2012 conference (pp. 71–84). New York: Springer.Google Scholar
  26. Krummheuer, G., & Schütte, M. (2016). Adaptability as a developmental aspect of mathematical thinking in the early years. In T. Meaney, L. Troels, A. Wernberg, O. Helenius, & M. L. Johansson (Eds.), Mathematics education in the early years, results from the POEM2 conference 2014 (pp. 171–202). New York: Springer.Google Scholar
  27. Laakso, M.-L. (1995). Mothers’ and fathers’ communication clarity and teaching strategies with their school-aged children. Journal of Applied Developmental Psychology, 16, 445–461.CrossRefGoogle Scholar
  28. Lawson, A., & Lawson, J. (2008). Make ‘n’ Break. Ravensburg, Germany: Ravensburger Spielverlag. Retrieved from http://www.ravensburger.de/shop/grosse-marken/make-nbreak/make-n-break-23263/index.html. [2010-05-15]Google Scholar
  29. Miller, K., Kelly, M., & Zhou, X. (2005). Learning mathematics in China and the United States. In J. Campbell (Ed.), Handbook of mathematical cognition (pp. 163–178). New York: Psychology Press.Google Scholar
  30. Mullis, R. L., & Mullis, A. K. (1986). Mother-child and father-child interactions: A study of problem-solving strategies. Child Study Journal, 6, 1–11.Google Scholar
  31. Nader-Grosbois, N., Normandeau, S., Ricard-Cossette, M., & Quintal, G. (2008). Mother’s, father’s regulation and child’s selfregulation in a computer-mediated learning situation. European Journal of Psychology of Education, XXIII(1), 95–115.CrossRefGoogle Scholar
  32. National Council of Teachers of Mathematics (NCTM). (2000). Principles and Standars for School mathematics. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  33. National Council of Teachers of Mathematics (NCTM). (2013). Mathematics in Early Childhood Learning. A Position of the National Council of Teachers of Mathematics. Retrieved from http://www.nctm.org/Standards-and-Positions/Position-Statements/Mathematics-in-Early-Childhood-Learning/. [2014-12-15].
  34. Parke, R. D. (2002). Fathers and families. In M. H. Bornstein (Ed.), Handbook of parenting: Volume 3. Being and becoming a parent (pp. 27–73). Mahwah, NJ/London: Lawrence Erlbaum.Google Scholar
  35. Parke, R. D. (2004). Development in the family. Annual Review of Psychology, 55, 365–399.CrossRefGoogle Scholar
  36. Pound, L. (2006). Supporting mathematical development in the early years. Maidenhead, Berkshire: Open University Press.Google Scholar
  37. Pound, L. (2008). Thinking and learning about mathematics in the early years. Abingdon, Oxfordshire: Routledge.CrossRefGoogle Scholar
  38. Schütz, A., & Luckmann, T. (1979). Strukturen der Lebenswelt. Frankfurt, Germany: Suhrkamp.Google Scholar
  39. Tamis-LeMonda, C. S. (2004). Conceptualizing fathers’ roles: Playmates and more. Human Development, 47, 220–227. https://doi.org/10.1159/000078724CrossRefGoogle Scholar
  40. Tiedemann, K. (2013). How families support the learning of early years mathematics. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eight Congress of the European Society for Research in Mathematics Education (CERME) (pp.). ISBN.Google Scholar
  41. Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A decade of research. Educational Psychology Review, 22(3), 271–296.CrossRefGoogle Scholar
  42. Vandermaas-Peeler, M. (2008). Parental guidance of numeracy development in early childhood. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 277–290). Charlotte, NC: Information Age Publishing.Google Scholar
  43. Vogel, R. (2014). Mathematical situations of play and exploration as an empirical research instrument. In C. Benz, B. Brandt, U. Kortenkamp, G. Krummheuer, S. Ladel, & R. Vogel (Eds.), Early mathematics learning – Selected papers of the POEM 2012 conference (pp. 223–236). New York: Springer.Google Scholar
  44. Wertsch, J. V., & Tulviste, P. (1992). L. S. Vygotsky and contemporary developmental psychology. Developmental Psychology, 28(4), 548–557.CrossRefGoogle Scholar
  45. Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem-solving. Journal of Child Psychology and Child Psychiatry, 17, 89–100.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ergi Acar Bayraktar
    • 1
  1. 1.Institut für Didaktik der Mathematik und der InformatikGoethe University FrankfurtFrankfurtGermany

Personalised recommendations