Control Mechanisms of the Holo-Editosome in Trypanosomes

  • Jorge Cruz-ReyesEmail author
  • Blaine H. M. Mooers
  • Vikas Kumar
  • Pawan K. Doharey
  • Joshua Meehan
  • Luenn Chaparro
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 34)


RNA metabolism in the single mitochondrion of trypanosomes and related kinetoplastid protozoa exhibits a unique posttranscriptional maturation of mRNAs by specific U insertion/deletion RNA editing that creates protein-coding sequences in 12 mRNA targets. In T. brucei, the editing apparatus includes over 40 proteins and hundreds of small noncoding guide RNAs (gRNAs). The editing machinery faces several challenges besides the need to coordinate its numerous components. These challenges include specific targeting of over 3000 sites in mRNA-gRNA hybrids, faithful discrimination of a large pool of pre-edited, partially edited intermediates and fully edited transcripts in the mitochondrial milieu, and differential control of editing in insect and mammal hosts. However, the basic mechanistic steps that control substrate loading, initiation, and progression of editing are not understood. A growing understanding of the holo-editosome organization offers important clues. The editing holoenzyme is a dynamic aggregate of multi-protein subcomplexes: the “RNA-free” editing enzyme termed RECC and auxiliary RNPs. One RNP is the REH2C subcomplex that includes an RNA helicase. Another subcomplex is RESC that includes two proposed modules: GRBC and REMC. The current model of RNA editing apparatus involves multi-RNP complexes serving as scaffolds that bring together mRNA, gRNA, and the RECC enzyme. Such molecular scaffolds may provide a context for specific mRNA-gRNA annealing, specific site recognition, and editing fidelity and progression. Here, we review protein components in RECC that exhibit differential effects during the life cycle of trypanosomes and specific components of the auxiliary RNPs that may participate in editing control. Notably, variants of RECC and the accessory RNPs have been identified. These findings lead us to propose an updated model of RNA editing, whereby isoforms of enzymatic and nonenzymatic subcomplexes establish “dynamic” functionally distinct holo-editosomes. This should expand the flexibility and specificity of the control mechanisms in RNA editing.



This work was supported by the National Science Foundation [Collaborative Research 1616865 to J.C.-R. and 1616845 to B.H.M.M.]; AgriLife at TAMU [to J.C.-R.]; and Presbyterian Health Foundation [to B.H.M.M.].


  1. Ammerman ML, Hashimi H, Novotná L, Čičová Z, McEvoy SM, Lukeš J, Read LK (2011) MRB3010 is a core component of the MRB1 complex that facilitates an early step of the kinetoplastid RNA editing process. RNA 17:865–877CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ammerman ML, Downey KM, Hashimi H, Fisk JC, Tomasello DL, Faktorová D, Kafková L, King T, Lukeš J, Read LK (2012) Architecture of the trypanosome RNA editing accessory complex, MRB1. Nucleic Acids Res 40:5637–5650CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aphasizheva I, Aphasizhev R (2016) U-insertion/deletion mRNA-editing holoenzyme: definition in sight. Trends Parasitol 32:144–156CrossRefPubMedGoogle Scholar
  4. Aphasizheva I, Zhang L, Wang X, Kaake RM, Huang L, Monti S, Aphasizhev R (2014) RNA binding and core complexes constitute the U-insertion/deletion editosome. Mol Cell Biol 34:4329–4342CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frameshifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826CrossRefPubMedGoogle Scholar
  6. Blum B, Simpson L (1990) Guide RNAs in kinetoplastid mitochondria have a nonencoded 3′ oligo(U) tail involved in recognition of the preedited region. Cell 62:391–397CrossRefPubMedGoogle Scholar
  7. Bono F, Gehring NH (2011) Assembly, disassembly and recycling: the dynamics of exon junction complexes. RNA Biol 8:24–29CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carnes J, Soares CZ, Wickham C, Stuart K (2011) Endonuclease associations with three distinct editosomes in Trypanosoma brucei. J Biol Chem 286:19320–19330CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carnes J, McDermott S, Anupama A, Oliver BG, Sather DN, Stuart K (2017) In vivo cleavage specificity of Trypanosoma brucei editosome endonucleases. Nucleic Acids Res 45:4667–4686CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cifuentes-Rojas C, Halbig K, Sacharidou A, De Nova-Ocampo M, Cruz-Reyes J (2005) Minimal pre-mRNA substrates with natural and converted sites for full-round U insertion and U deletion RNA editing in trypanosomes. Nucleic Acids Res 33:6610–6620CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cifuentes-Rojas C, Pavia P, Hernandez A, Osterwisch D, Puerta C, Cruz-Reyes J (2007) Substrate determinants for RNA editing and editing complex interactions at a site for full-round U insertion. J Biol Chem 282:4265–4276CrossRefPubMedGoogle Scholar
  12. Cruz-Reyes J, Sollner-Webb B (1996) Trypanosome U-deletional RNA editing involves guide RNA-directed endonuclease cleavage, terminal U exonuclease, and RNA ligase activities. Proc Natl Acad Sci U S A 93:8901–8906CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cruz-Reyes J, Rusché LN, Piller KJ, Sollner-Webb B (1998a) T. brucei RNA editing: adenosine nucleotides inversely affect U-deletion and U-insertion reactions at mRNA cleavage. Mol Cell 1:401–409CrossRefPubMedGoogle Scholar
  14. Cruz-Reyes J, Rusché LN, Sollner-Webb B (1998b) Trypanosoma brucei U insertion and U deletion activities co-purify with an enzymatic editing complex but are differentially optimized. Nucleic Acids Res 26:3634–3639CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cruz-Reyes J, Zhelonkina A, Rusche L, Sollner-Webb B (2001) Trypanosome RNA editing: simple guide RNA features enhance U deletion 100-fold. Mol Cell Biol 21:884–892CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cruz-Reyes J, Mooers BH, Abu-Adas Z, Kumar V, Gulati S (2016) DEAH-RHA helicase•Znf cofactor systems in kinetoplastid RNA editing and evolutionarily distant RNA processes. RNA Dis 3:e1336PubMedPubMedCentralGoogle Scholar
  17. Dixit S, Muller-McNicoll M, David V, Zarnack K, Ule J, Hashimi H, Lukes J (2017) Differential binding of mitochondrial transcripts by MRB8170 and MRB4160 regulates distinct editing fates of mitochondrial mRNA in trypanosomes. MBio 8:e02288-16CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fisk JC, Ammerman ML, Presnyak V, Read LK (2008) TbRGG2, an essential RNA editing accessory factor in two Trypanosoma brucei life cycle stages. J Biol Chem 283:23016–23025CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gan J, Shaw G, Tropea JE, Waugh DS, Court DL, Ji X (2008) A stepwise model for double-stranded RNA processing by ribonuclease III. Mol Microbiol 67:143–154CrossRefPubMedGoogle Scholar
  20. Guo X, Ma J, Sun J, Gao G (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci U S A 104:151–156CrossRefPubMedGoogle Scholar
  21. Guo X, Ernst NL, Carnes J, Stuart KD (2010) The zinc-fingers of KREPA3 are essential for the complete editing of mitochondrial mRNAs in Trypanosoma brucei. PLoS One 5:e8913CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hashimi H, Ziková A, Panigrahi AK, Stuart KD, Lukeš J (2008) TbRGG1, an essential protein involved in kinetoplastid RNA metabolism that is associated with a novel multiprotein complex. RNA 14:970–980CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hernandez A, Panigrahi A, Cifuentes-Rojas C, Sacharidou A, Stuart K, Cruz-Reyes J (2008) Determinants for association and guide RNA-directed endonuclease cleavage by purified RNA editing complexes from Trypanosoma brucei. J Mol Biol 381:35–48CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hernandez A, Madina BR, Ro K, Wohlschlegel JA, Willard B, Kinter MT, Cruz-Reyes J (2010) REH2 RNA helicase in kinetoplastid mitochondria: ribonucleoprotein complexes and essential motifs for unwinding and guide RNA (gRNA) binding. J Biol Chem 285:1220–1228CrossRefPubMedGoogle Scholar
  25. Jarmoskaite I, Russell R (2014) RNA helicase proteins as chaperones and remodelers. Annu Rev Biochem 83:697–725CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kafková L, Ammerman ML, Faktorová D, Fisk JC, Zimmer SL, Sobotka R, Read LK, Lukeš J, Hashimi H (2012) Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei. RNA 18(10):1846–1861. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kang X, Gao G, Rogers K, Falick AM, Zhou S, Simpson L (2006) Reconstitution of full-round uridine-deletion RNA editing with three recombinant proteins. Proc Natl Acad Sci U S A 103:13944–13949CrossRefPubMedPubMedCentralGoogle Scholar
  28. Koslowsky D, Sun Y, Hindenach J, Theisen T, Lucas J (2013) The insect-phase gRNA transcriptome in Trypanosoma brucei. Nucleic Acids Res 42(3):1873–1886CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kumar V, Madina BR, Gulati S, Vashisht AA, Kanyumbu C, Pieters B, Shakir A, Wohlschlegel JA, Read LK, Mooers BH, Cruz-Reyes J (2016) REH2C helicase and GRBC subcomplexes may base pair through mRNA and small guide RNA in kinetoplastid editosomes. J Biol Chem 291:5753–5764CrossRefPubMedPubMedCentralGoogle Scholar
  30. Law JA, O'Hearn SF, Sollner-Webb B (2008) Trypanosoma brucei RNA editing protein TbMP42 (band VI) is crucial for the endonucleolytic cleavages but not the subsequent steps of U-deletion and U-insertion. RNA 14:1187–1200CrossRefPubMedPubMedCentralGoogle Scholar
  31. Madina BR, Kumar V, Metz R, Mooers BH, Bundschuh R, Cruz-Reyes J (2014) Native mitochondrial RNA-binding complexes in kinetoplastid RNA editing differ in guide RNA composition. RNA 20:1142–1152CrossRefPubMedPubMedCentralGoogle Scholar
  32. Madina BR, Kumar V, Mooers BH, Cruz-Reyes J (2015) Native variants of the MRB1 complex exhibit specialized functions in kinetoplastid RNA editing. PLoS One 10:e0123441. CrossRefPubMedPubMedCentralGoogle Scholar
  33. McDermott SM, Stuart K (2017) The essential functions of KREPB4 are developmentally distinct and required for endonuclease association with editosomes. RNA 23:1672–1684CrossRefPubMedGoogle Scholar
  34. McDermott SM, Carnes J, Stuart K (2015a) Identification by random mutagenesis of functional domains in KREPB5 that differentially affect RNA editing between life cycle stages of Trypanosoma brucei. Mol Cell Biol 35:3945–3961CrossRefPubMedPubMedCentralGoogle Scholar
  35. McDermott SM, Guo X, Carnes J, Stuart K (2015b) Differential editosome protein function between life cycle stages of Trypanosoma brucei. J Biol Chem 290:24914–24931CrossRefPubMedPubMedCentralGoogle Scholar
  36. McDermott SM, Luo J, Carnes J, Ranish JA, Stuart K (2016) The architecture of Trypanosoma brucei editosomes. Proc Natl Acad Sci U S A 113:E6476–E6485CrossRefPubMedPubMedCentralGoogle Scholar
  37. Panigrahi AK, Ziková A, Dalley RA, Acestor N, Ogata Y, Anupama A, Myler PJ, Stuart KD (2008) Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex. Mol Cell Proteomics 7:534–545CrossRefPubMedGoogle Scholar
  38. Prabu JR, Muller M, Thomae AW, Schussler S, Bonneau F, Becker PB, Conti E (2015) Structure of the RNA helicase MLE reveals the molecular mechanisms for uridine specificity and RNA-ATP coupling. Mol Cell 60:487–499CrossRefPubMedGoogle Scholar
  39. Read LK, Lukeš J, Hashimi H (2015) Trypanosome RNA editing: the complexity of getting U in and taking U out. Wiley Interdiscip Rev RNA.
  40. Reifur L, Yu LE, Cruz-Reyes J, Vanhartesvelt M, Koslowsky DJ (2010) The impact of mRNA structure on guide RNA targeting in kinetoplastid RNA editing. PLoS One 5:e12235CrossRefPubMedPubMedCentralGoogle Scholar
  41. Robert-Paganin J, Réty S, Leulliot N (2015) Regulation of DEAH/RHA helicases by G-patch proteins. Biomed Res Int 2015:931857CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rusché LN, Cruz-Reyes J, Piller KJ, Sollner-Webb B (1997) Purification of a functional enzymatic editing complex from Trypanosoma brucei mitochondria. EMBO J 16:4069–4081CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sabatini RS, Adler BK, Madison-Antenucci S, McManus MT, Hajduk SL (1998) Biochemical methods for analysis of kinetoplastid RNA editing. Methods 15:15–26CrossRefPubMedGoogle Scholar
  44. Seiwert SD, Heidmann S, Stuart K (1996) Direct visualization of uridylate deletion in vitro suggests a mechanism for kinetoplastid RNA editing. Cell 84:831–841CrossRefPubMedGoogle Scholar
  45. Simpson RM, Bruno AE, Chen R, Lott K, Tylec BL, Bard JE, Sun Y, Buck MJ, Read LK (2017) Trypanosome RNA editing mediator complex proteins have distinct functions in gRNA utilization. Nucleic Acids Res 45:7965–7983CrossRefPubMedPubMedCentralGoogle Scholar
  46. Stuart KD, Schnaufer A, Ernst NL, Panigrahi AK (2005) Complex management: RNA editing in trypanosomes. Trends Biochem Sci 30:97–105CrossRefPubMedGoogle Scholar
  47. Walbott H, Mouffok S, Capeyrou R, Lebaron S, Humbert O, van Tilbeurgh H, Henry Y, Leulliot N (2010) Prp43p contains a processive helicase structural architecture with a specific regulatory domain. EMBO J 29:2194–2204CrossRefPubMedPubMedCentralGoogle Scholar
  48. Weng J, Aphasizheva I, Etheridge RD, Huang L, Wang X, Falick AM, Aphasizhev R (2008) Guide RNA-binding complex from mitochondria of trypanosomatids. Mol Cell 32:198–209CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ye P, Liu S, Zhu Y, Chen G, Gao G (2010) DEXH-box protein DHX30 is required for optimal function of the zinc-finger antiviral protein. Protein Cell 1:956–964CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jorge Cruz-Reyes
    • 1
    Email author
  • Blaine H. M. Mooers
    • 2
  • Vikas Kumar
    • 1
  • Pawan K. Doharey
    • 1
  • Joshua Meehan
    • 1
  • Luenn Chaparro
    • 1
  1. 1.Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations