Advertisement

Mitochondrial RNase P Complex in Animals: Mitochondrial tRNA Processing and Links to Disease

  • Maithili Saoji
  • Rachel T. Cox
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 34)

Abstract

Loss of mitochondrial function not only causes specific mitochondrial diseases but also contributes to serious conditions such as neurodegeneration and diabetes. Since mitochondrial DNA is transcribed as a polycistronic message comprised of three forms of RNA (rRNA, mRNA, and tRNA), proper 5′- and 3′-end cleavage is essential. In the nucleus, tRNA 5′-end processing is carried out by the first identified ribozyme, RNase P. In contrast, mitochondrial tRNAs are processed by a three-protein complex, mitochondrial RNase P, which does not have an RNA component. An accessory subcomplex made of the m1A9 methyltransferase MRPP1 and the dehydrogenase MRPP2 binds to the metallonuclease MRPP3 that cleaves the RNA phosphodiester backbone. Each protein has been shown to be essential in model organisms, and loss of each gives rise to human multisystemic diseases with many characteristics of mitochondrial disease. In this review, we discuss what is known about the mitochondrial RNase P complex, the molecular mechanism of 5′-end mitochondrial tRNA processing, and how loss of this activity causes human disease.

Notes

Funding

This work was supported by the National Institutes of Health/Department of Defense [CHIRP HU0001–14–2-0041 to M.S. and R.T.C.].

References

  1. Akagawa S et al (2017) Japanese male siblings with 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency (HSD10 disease) without neurological regression. JIMD Rep 32:81–85.  https://doi.org/10.1007/8904_2016_570 CrossRefPubMedGoogle Scholar
  2. Akawi NA et al (2016) A homozygous splicing mutation in ELAC2 suggests phenotypic variability including intellectual disability with minimal cardiac involvement. Orphanet J Rare Dis 11:139.  https://doi.org/10.1186/s13023-016-0526-8 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson S et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465CrossRefPubMedGoogle Scholar
  4. Antonicka H, Shoubridge EA (2015) Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep.  https://doi.org/10.1016/j.celrep.2015.01.030
  5. Antonicka H, Sasarman F, Nishimura T, Paupe V, Shoubridge EA (2013) The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression. Cell Metab 17:386–398.  https://doi.org/10.1016/j.cmet.2013.02.006 CrossRefPubMedGoogle Scholar
  6. Bellen HJ et al (2004) The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167:761–781.  https://doi.org/10.1534/genetics.104.026427 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Borowski LS, Dziembowski A, Hejnowicz MS, Stepien PP, Szczesny RJ (2013) Human mitochondrial RNA decay mediated by PNPase–hSuv3 complex takes place in distinct foci. Nucleic Acids Res 41:1223–1240.  https://doi.org/10.1093/nar/gks1130 CrossRefPubMedGoogle Scholar
  8. Brandon MC, Lott MT, Nguyen KC, Spolim S, Navathe SB, Baldi P, Wallace DC (2005) MITOMAP: a human mitochondrial genome database—2004 update. Nucleic Acids Res 33:D611–D613.  https://doi.org/10.1093/nar/gki079 CrossRefPubMedGoogle Scholar
  9. Brzezniak LK, Bijata M, Szczesny RJ, Stepien PP (2011) Involvement of human ELAC2 gene product in 3′ end processing of mitochondrial tRNAs. RNA Biol 8:616–626.  https://doi.org/10.4161/rna.8.4.15393 CrossRefPubMedGoogle Scholar
  10. Chatfield KC et al (2015) Mitochondrial energy failure in HSD10 disease is due to defective mtDNA transcript processing. Mitochondrion 21:1–10.  https://doi.org/10.1016/j.mito.2014.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chinnery PF (2000) Mitochondrial disorders overview. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews® [Internet]. University of Washington, Seattle, pp 1993–2017Google Scholar
  12. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786CrossRefPubMedGoogle Scholar
  13. Deutschmann AJ et al (2014) Mutation or knock-down of 17beta-hydroxysteroid dehydrogenase type 10 cause loss of MRPP1 and impaired processing of mitochondrial heavy strand transcripts. Hum Mol Genet 23:3618–3628.  https://doi.org/10.1093/hmg/ddu072 CrossRefPubMedGoogle Scholar
  14. Dubrovsky EB, Dubrovskaya VA, Levinger L, Schiffer S, Marchfelder A (2004) Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3′ ends in vivo. Nucleic Acids Res 32:255–262.  https://doi.org/10.1093/nar/gkh182 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Falk MJ et al (2016) A novel HSD17B10 mutation impairing the activities of the mitochondrial RNase P complex causes X-linked intractable epilepsy and neurodevelopmental regression. RNA Biol 13:477–485.  https://doi.org/10.1080/15476286.2016.1159381 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fukao T et al (2014) The first case in Asia of 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency (HSD10 disease) with atypical presentation. J Hum Genet 59:609–614.  https://doi.org/10.1038/jhg.2014.79 CrossRefPubMedGoogle Scholar
  17. Gobert A et al (2010) A single Arabidopsis organellar protein has RNase P activity. Nat Struct Mol Biol 17:740. doi: https://doi.org/10.1038/nsmb.1812. https://www.nature.com/articles/nsmb.1812—supplementary-informationCrossRefGoogle Scholar
  18. Gray MW (2012) Mitochondrial evolution. Cold Spring Harb Perspect Biol 4:a011403.  https://doi.org/10.1101/cshperspect.a011403 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guan MX, Enriquez JA, Fischel-Ghodsian N, Puranam RS, Lin CP, Maw MA, Attardi G (1998) The deafness-associated mitochondrial DNA mutation at position 7445, which affects tRNASer(UCN) precursor processing, has long-range effects on NADH dehydrogenase subunit ND6 gene expression. Mol Cell Biol 18:5868–5879CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guo L, Yuan Y, Bi R (2016) Mitochondrial DNA mutation m.5512A > G in the acceptor-stem of mitochondrial tRNATrp causing maternally inherited essential hypertension. Biochem Biophys Res Commun 479:800–807.  https://doi.org/10.1016/j.bbrc.2016.09.129 CrossRefPubMedGoogle Scholar
  21. Haack TB et al (2013) ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet 93:211–223.  https://doi.org/10.1016/j.ajhg.2013.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hochberg I et al (2017) A homozygous variant in mitochondrial RNase P subunit PRORP is associated with Perrault syndrome characterized by hearing loss and primary ovarian insufficiency. BioRxiv.  https://doi.org/10.1101/168252
  23. Holzmann J, Frank P, Löffler E, Bennett KL, Gerner C, Rossmanith W (2008) RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell 135:462–474.  https://doi.org/10.1016/j.cell.2008.09.013 CrossRefPubMedGoogle Scholar
  24. Howard MJ, Lim WH, Fierke CA, Koutmos M (2012) Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5′ processing. Proc Natl Acad Sci U S A 109:16149–16154.  https://doi.org/10.1073/pnas.1209062109 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Iborra FJ, Kimura H, Cook PR (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol 2:9.  https://doi.org/10.1186/1741-7007-2-9 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jablonski JA, Caputi M (2009) Role of cellular RNA processing factors in human immunodeficiency virus type 1 mRNA metabolism, replication, and infectivity. J Virol 83:981–992.  https://doi.org/10.1128/JVI.01801-08 CrossRefPubMedGoogle Scholar
  27. Jackman JE, Montange RK, Malik HS, Phizicky EM (2003) Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. RNA 9:574–585.  https://doi.org/10.1261/rna.5070303 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jenkinson EM et al (2012) Perrault syndrome: further evidence for genetic heterogeneity. J Neurol 259:974–976.  https://doi.org/10.1007/s00415-011-6285-5 CrossRefPubMedGoogle Scholar
  29. Jiang P et al (2016) A hypertension-associated tRNAAla mutation alters tRNA metabolism and mitochondrial function. Mol Cell Biol 36:1920–1930.  https://doi.org/10.1128/MCB.00199-16 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jourdain AA, Koppen M, Wydro M, Rodley CD, Lightowlers RN, Chrzanowska-Lightowlers ZM, Martinou JC (2013) GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab 17:399–410.  https://doi.org/10.1016/j.cmet.2013.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kash JC, Cunningham DM, Smit MW, Park Y, Fritz D, Wilusz J, Katze MG (2002) Selective translation of eukaryotic mRNAs: functional molecular analysis of GRSF-1, a positive regulator of influenza virus protein synthesis. J Virol 76:10417–10426.  https://doi.org/10.1128/JVI.76.20.10417-10426.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kissinger CR et al (2004) Crystal structure of human ABAD/HSD10 with a bound inhibitor: implications for design of Alzheimer’s disease therapeutics. J Mol Biol 342:943–952.  https://doi.org/10.1016/j.jmb.2004.07.071 CrossRefPubMedGoogle Scholar
  33. Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA (2016) The diversity of ribonuclease P: protein and RNA catalysts with analogous biological functions. Biomol Ther 6.  https://doi.org/10.3390/biom6020027
  34. Korman SH (2006) Inborn errors of isoleucine degradation: a review. Mol Genet Metab 89:289–299.  https://doi.org/10.1016/j.ymgme.2006.07.010 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Land M et al (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15:141–161.  https://doi.org/10.1007/s10142-015-0433-4 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Levinger L, Jacobs O, James M (2001) In vitro 3′-end endonucleolytic processing defect in a human mitochondrial tRNASer(UCN) precursor with the U7445C substitution, which causes non-syndromic deafness. Nucleic Acids Res 29:4334–4340CrossRefPubMedPubMedCentralGoogle Scholar
  37. Levinger L, Giege R, Florentz C (2003) Pathology-related substitutions in human mitochondrial tRNAIle reduce precursor 3′ end processing efficiency in vitro. Nucleic Acids Res 31:1904–1912CrossRefPubMedPubMedCentralGoogle Scholar
  38. Levinger L, Oestreich I, Florentz C, Mörl M (2004) A pathogenesis-associated mutation in human mitochondrial tRNALeu(UUR) leads to reduced 3′-end processing and CCA addition. J Mol Biol 337:535–544.  https://doi.org/10.1016/j.jmb.2004.02.008 CrossRefPubMedGoogle Scholar
  39. Lewis OL, Farr CL, Kaguni LS (1995) Drosophila melanogaster Mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. Insect Mol Biol 4:263–278.  https://doi.org/10.1111/j.1365-2583.1995.tb00032.x CrossRefPubMedGoogle Scholar
  40. Li R, Liu Y, Li Z, Yang L, Wang S, Guan MX (2009) Failures in mitochondrial tRNAMet and tRNAGln metabolism caused by the novel 4401A>G mutation are involved in essential hypertension in a Han Chinese family. Hypertension 54:329–337.  https://doi.org/10.1161/HYPERTENSIONAHA.109.129270 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Liu Y, Li Y, Zhu C, Tian L, Guan M, Chen Y (2017) Mitochondrial biogenesis dysfunction and metabolic dysfunction from a novel mitochondrial tRNAMet 4467 C>A mutation in a Han Chinese family with maternally inherited hypertension. Sci Rep 7:3034.  https://doi.org/10.1038/s41598-017-03303-w CrossRefPubMedPubMedCentralGoogle Scholar
  42. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New HavenGoogle Scholar
  43. Mercer TR et al (2011) The human mitochondrial transcriptome. Cell 146:645–658.  https://doi.org/10.1016/j.cell.2011.06.051 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Metodiev MD et al (2016) Recessive mutations in TRMT10C cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies. Am J Hum Genet 98:993–1000.  https://doi.org/10.1016/j.ajhg.2016.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Moeller G, Adamski J (2009) Integrated view on 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 301:7–19.  https://doi.org/10.1016/j.mce.2008.10.040 CrossRefPubMedGoogle Scholar
  46. Oerum S et al (2017) Novel patient missense mutations in the HSD17B10 gene affect dehydrogenase and mitochondrial tRNA modification functions of the encoded protein. Biochim Biophys Acta 1863(12):3294–3302.  https://doi.org/10.1016/j.bbadis.2017.09.002 CrossRefPubMedGoogle Scholar
  47. Ofman R et al (2003) 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency is caused by mutations in the HADH2 gene. Am J Hum Genet 72:1300–1307CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474CrossRefPubMedGoogle Scholar
  49. Page IH (1967) The mosaic theory of arterial hypertension—its interpretation. Perspect Biol Med 10:325–333CrossRefPubMedGoogle Scholar
  50. Park H, Davidson E, King MP (2003) The pathogenic A3243G mutation in human mitochondrial tRNALeu(UUR) decreases the efficiency of aminoacylation. Biochemistry 42:958–964.  https://doi.org/10.1021/bi026882r CrossRefPubMedGoogle Scholar
  51. Perez-Cerda C et al (2005) 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency: an X-linked inborn error of isoleucine metabolism that may mimic a mitochondrial disease. Pediatr Res 58:488–491.  https://doi.org/10.1203/01.pdr.0000176916.94328.cd CrossRefPubMedGoogle Scholar
  52. Powell CA, Nicholls TJ, Minczuk M (2015) Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front Genet 6:79.  https://doi.org/10.3389/fgene.2015.00079 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rackham O et al (2016) Hierarchical RNA processing is required for mitochondrial ribosome assembly. Cell Rep 16:1874–1890.  https://doi.org/10.1016/j.celrep.2016.07.031 CrossRefPubMedGoogle Scholar
  54. Rauschenberger K et al (2010) A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol Med 2:51–62.  https://doi.org/10.1002/emmm.200900055 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Reid FM, Rovio A, Holt IJ, Jacobs HT (1997) Molecular phenotype of a human lymphoblastoid cell-line homoplasmic for the np 7445 deafness-associated mitochondrial mutation. Hum Mol Genet 6:443–449CrossRefPubMedGoogle Scholar
  56. Reinhard L, Sridhara S, Hällberg BM (2017) The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria. Nucleic Acids Res 45(21):12469–12480.  https://doi.org/10.1093/nar/gkx902 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Richardson A, Berry GT, Garganta C, Abbott MA (2016) Hydroxysteroid 17-beta dehydrogenase type 10 disease in siblings. JIMD Rep 32:25–32.  https://doi.org/10.1007/8904_2016_547 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Robertson HD, Altman S, Smith JD (1972) Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid precursor. J Biol Chem 247:5243–5251PubMedGoogle Scholar
  59. Sanchez MI et al (2011) RNA processing in human mitochondria. Cell Cycle 10:2904–2916.  https://doi.org/10.4161/cc.10.17.17060 CrossRefPubMedGoogle Scholar
  60. Schaub MC, Lopez SR, Caputi M (2007) Members of the heterogeneous nuclear ribonucleoprotein H family activate splicing of an HIV-1 splicing substrate by promoting formation of ATP-dependent spliceosomal complexes. J Biol Chem 282:13617–13626CrossRefPubMedGoogle Scholar
  61. Seaver LH et al (2011) A novel mutation in the HSD17B10 gene of a 10-year-old boy with refractory epilepsy, choreoathetosis and learning disability. PLoS One 6:e27348.  https://doi.org/10.1371/journal.pone.0027348 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sen A, Cox RT (2017) Fly models of human diseases: Drosophila as a model for understanding human mitochondrial mutations and disease. Curr Top Dev Biol 121:1–27.  https://doi.org/10.1016/bs.ctdb.2016.07.001 CrossRefPubMedGoogle Scholar
  63. Sen A, Karasik A, Shanmuganathan A, Mirkovic E, Koutmos M, Cox RT (2016) Loss of the mitochondrial protein-only ribonuclease P complex causes aberrant tRNA processing and lethality in Drosophila. Nucleic Acids Res 44:6409–6422.  https://doi.org/10.1093/nar/gkw338 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Shafqat N et al (2003) Expanded substrate screenings of human and Drosophila type 10 17β-hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: characterization of multifunctional 3α/7α/7β/17β/20β/21-HSD. Biochem J 376:49–60CrossRefPubMedPubMedCentralGoogle Scholar
  65. Shao Z et al (2014) Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate. Nucleic Acids Res 42:509–525.  https://doi.org/10.1093/nar/gkt869 CrossRefPubMedGoogle Scholar
  66. Spradling AC et al (1999) The Berkeley Drosophila genome project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153:135–177PubMedPubMedCentralGoogle Scholar
  67. Sutton VR, O'Brien WE, Clark GD, Kim J, Wanders RJ (2003) 3-Hydroxy-2-methylbutyryl-CoA dehydrogenase deficiency. J Inherit Metab Dis 26:69–71CrossRefPubMedGoogle Scholar
  68. Taanman J-W (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123.  https://doi.org/10.1016/S0005-2728(98)00161-3 CrossRefPubMedGoogle Scholar
  69. Taschner A, Weber C, Buzet A, Hartmann Roland K, Hartig A, Rossmanith W (2012) Nuclear RNase P of Trypanosoma brucei: a single protein in place of the multicomponent RNA-protein complex. Cell Rep 2:19–25.  https://doi.org/10.1016/j.celrep.2012.05.021 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Torroja L, Ortuno-Sahagun D, Ferrus A, Hammerle B, Barbas JA (1998) scully, an essential gene of Drosophila, is homologous to mammalian mitochondrial type II L-3-hydroxyacyl-CoA dehydrogenase/amyloid-beta peptide-binding protein. J Cell Biol 141:1009–1017CrossRefPubMedPubMedCentralGoogle Scholar
  71. Van Haute L, Pearce SF, Powell CA, D'Souza AR, Nicholls TJ, Minczuk M (2015) Mitochondrial transcript maturation and its disorders. J Inherit Metab Dis 38:655–680.  https://doi.org/10.1007/s10545-015-9859-z CrossRefPubMedPubMedCentralGoogle Scholar
  72. Vilardo E, Rossmanith W (2015) Molecular insights into HSD10 disease: impact of SDR5C1 mutations on the human mitochondrial RNase P complex. Nucleic Acids Res 43:5112–5119.  https://doi.org/10.1093/nar/gkv408 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, Rossmanith W (2012) A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase—extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res 40:11583–11593.  https://doi.org/10.1093/nar/gks910 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wang S et al (2011) Maternally inherited essential hypertension is associated with the novel 4263A>G mutation in the mitochondrial tRNAIle gene in a large Han Chinese family. Circ Res 108:862–870.  https://doi.org/10.1161/CIRCRESAHA.110.231811 CrossRefPubMedGoogle Scholar
  75. Xie X, Dubrovskaya VA, Dubrovsky EB (2011) RNAi knockdown of dRNaseZ, the Drosophila homolog of ELAC2, impairs growth of mitotic and endoreplicating tissues. Insect Biochem Mol Biol 41:167–177.  https://doi.org/10.1016/j.ibmb.2010.12.001 CrossRefPubMedGoogle Scholar
  76. Xie X, Dubrovskaya V, Yacoub N, Walska J, Gleason T, Reid K, Dubrovsky EB (2013) Developmental roles of Drosophila tRNA processing endonuclease RNase ZL as revealed with a conditional rescue system. Dev Biol 381:324–340.  https://doi.org/10.1016/j.ydbio.2013.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Xu F et al (2008) Disruption of a mitochondrial RNA-binding protein gene results in decreased cytochrome b expression and a marked reduction in ubiquinol–cytochrome c reductase activity in mouse heart mitochondria. Biochem J 416:15CrossRefPubMedGoogle Scholar
  78. Yang SY et al (2009) Mental retardation linked to mutations in the HSD17B10 gene interfering with neurosteroid and isoleucine metabolism. Proc Natl Acad Sci U S A 106:14820–14824.  https://doi.org/10.1073/pnas.0902377106 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yang S-Y, He X-Y, Isaacs C, Dobkin C, Miller D, Philipp M (2014) Roles of 17β-hydroxysteroid dehydrogenase type 10 in neurodegenerative disorders. J Steroid Biochem Mol Biol 143:460–472.  https://doi.org/10.1016/j.jsbmb.2014.07.001 CrossRefPubMedGoogle Scholar
  80. Yogev O, Pines O (2011) Dual targeting of mitochondrial proteins: mechanism, regulation and function. Biochim Biophys Acta 1808:1012–1020.  https://doi.org/10.1016/j.bbamem.2010.07.004 CrossRefPubMedGoogle Scholar
  81. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40.  https://doi.org/10.1186/1471-2105-9-40 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhu HY, Wang SW, Liu L, Li YH, Chen R, Wang L, Holliman CJ (2009) A mitochondrial mutation A4401G is involved in the pathogenesis of left ventricular hypertrophy in Chinese hypertensives. Eur J Hum Genet 17:172–178.  https://doi.org/10.1038/ejhg.2008.151 CrossRefPubMedGoogle Scholar
  83. Zschocke J (2012) HSD10 disease: clinical consequences of mutations in the HSD17B10 gene. J Inherit Metab Dis 35:81–89.  https://doi.org/10.1007/s10545-011-9415-4 CrossRefPubMedGoogle Scholar
  84. Zschocke J, Ruiter JP, Brand J, Lindner M, Hoffmann GF, Wanders RJ, Mayatepek E (2000) Progressive infantile neurodegeneration caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency: a novel inborn error of branched-chain fatty acid and isoleucine metabolism. Pediatr Res 48:852–855.  https://doi.org/10.1203/00006450-200012000-00025 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyThe Collaborative Health Initiative Research Program (CHIRP), Uniformed Services UniversityBethesdaUSA

Personalised recommendations