Advertisement

Mitochondrial RNA Turnover in Metazoa

  • Christoph Freyer
  • Paula Clemente
  • Anna Wredenberg
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 34)

Abstract

Correct regulation of mitochondrial gene expression is central to controlling mitochondrial function, and defects in all aspects of gene expression have been observed in a range of disorders. Many of the central mechanisms involved are not yet understood, but high conservation among many species allows for the use of a range of model systems to further our understanding of mitochondrial gene expression. Studies from mice and fruit flies have shown functional conservation with the human system and have provided important insights into general mechanisms inside the mitochondrial network. Here we describe recent insights into mitochondrial gene expression, focusing on observations made in the fruit fly, Drosophila melanogaster.

References

  1. Adán C, Matsushima Y, Hernández-Sierra R et al (2008) Mitochondrial transcription factor B2 is essential for metabolic function in Drosophila melanogaster development. J Biol Chem 283:12333–12342.  https://doi.org/10.1074/jbc.M801342200 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alam TI, Kanki T, Muta T et al (2003) Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31:1640–1645CrossRefPubMedGoogle Scholar
  3. Allen JF (2017) The CoRR hypothesis for genes in organelles. J Theor Biol 434:50–57.  https://doi.org/10.1016/j.jtbi.2017.04.008 CrossRefPubMedGoogle Scholar
  4. Aloni Y, Attardi G (1971) Symmetrical in vivo transcription of mitochondrial DNA in HeLa cells. Proc Natl Acad Sci U S A 68:1757–1761CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amaral A, Ramalho-Santos J, St John JC (2007) The expression of polymerase gamma and mitochondrial transcription factor a and the regulation of mitochondrial DNA content in mature human sperm. Hum Reprod 22:1585–1596.  https://doi.org/10.1093/humrep/dem030 CrossRefPubMedGoogle Scholar
  6. Amunts A, Brown A, Toots J et al (2015) The structure of the human mitochondrial ribosome. Science 348:95–98.  https://doi.org/10.1126/science.aaa1193 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Andreenkov OV, Volkova EI, Demakov SA et al (2016) Targeted mutagenesis of Drosophila RNaseZ gene by homologous recombination. Dokl Biochem Biophys 471:399–402.  https://doi.org/10.1134/S1607672916060065 CrossRefPubMedGoogle Scholar
  8. Antonicka H, Shoubridge EA (2015) Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep 10:920–932.  https://doi.org/10.1016/j.celrep.2015.01.030 CrossRefGoogle Scholar
  9. Antonicka H, Sasarman F, Nishimura T et al (2013) The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression. Cell Metab 17:386–398.  https://doi.org/10.1016/j.cmet.2013.02.006 CrossRefPubMedGoogle Scholar
  10. Aphasizhev R, Aphasizheva I (2008) Terminal RNA uridylyltransferases of trypanosomes. Biochim Biophys Acta 1779:270–280.  https://doi.org/10.1016/j.bbagrm.2007.12.007 CrossRefPubMedGoogle Scholar
  11. Arroyo JD, Jourdain AA, Calvo SE et al (2016) A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation. Cell Metab 24:875–885.  https://doi.org/10.1016/j.cmet.2016.08.017 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Asin-Cayuela J, Schwend T, Farge G, Gustafsson CM (2005) The human mitochondrial transcription termination factor (mTERF) is fully active in vitro in the non-phosphorylated form. J Biol Chem 280:25499–25505.  https://doi.org/10.1074/jbc.M501145200 CrossRefPubMedGoogle Scholar
  13. Augustin MA, Reichert AS, Betat H et al (2003) Crystal structure of the human CCA-adding enzyme: insights into template-independent polymerization. J Mol Biol 328:985–994CrossRefPubMedGoogle Scholar
  14. Baggio F, Bratic A, Mourier A et al (2014) Drosophila melanogaster LRPPRC2 is involved in coordination of mitochondrial translation. Nucleic Acids Res 42:13920–13938.  https://doi.org/10.1093/nar/gku1132 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bai Y, Srivastava SK, Chang JH et al (2011) Structural basis for dimerization and activity of human PAPD1, a noncanonical poly(a) polymerase. Mol Cell 41:311–320.  https://doi.org/10.1016/j.molcel.2011.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Barkan A, Small ID (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442.  https://doi.org/10.1146/annurev-arplant-050213-040159 CrossRefPubMedGoogle Scholar
  17. Bar-Yaacov D, Frumkin I, Yashiro Y et al (2016) Mitochondrial 16S rRNA is methylated by tRNA methyltransferase TRMT61B in all vertebrates. PLoS Biol 14:e1002557CrossRefPubMedPubMedCentralGoogle Scholar
  18. Battey J, Clayton DA (1978) The transcription map of mouse mitochondrial DNA. Cell 14:143–156CrossRefPubMedGoogle Scholar
  19. Bernstein JA, Khodursky AB, Lin P-H et al (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 99:9697–9702.  https://doi.org/10.1073/pnas.112318199 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bilbille Y, Gustilo EM, Harris KA et al (2011) The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. J Mol Biol 406:257–274.  https://doi.org/10.1016/j.jmb.2010.11.042 CrossRefPubMedGoogle Scholar
  21. Boehm E, Zaganelli S, Maundrell K et al (2017) FASTKD1 and FASTKD4 have opposite effects on expression of specific mitochondrial RNAs, depending upon their endonuclease-like RAP domain. Nucleic Acids Res 45:6135–6146.  https://doi.org/10.1093/nar/gkx164 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bogenhagen DF, Applegate EF, Yoza BK (1984) Identification of a promoter for transcription of the heavy strand of human mtDNA: in vitro transcription and deletion mutagenesis. Cell 36:1105–1113CrossRefPubMedGoogle Scholar
  23. Bogenhagen DF, Martin DW, Koller A (2014) Initial steps in RNA processing and ribosome assembly occur at mitochondrial DNA nucleoids. Cell Metab 19:618–629.  https://doi.org/10.1016/j.cmet.2014.03.013 CrossRefPubMedGoogle Scholar
  24. Borowski LS, Szczesny RJ (2014) Measurement of mitochondrial RNA stability by metabolic labeling of transcripts with 4-thiouridine. Methods Mol Biol 1125:277–286.  https://doi.org/10.1007/978-1-62703-971-0_22 CrossRefPubMedGoogle Scholar
  25. Borowski LS, Dziembowski A, Hejnowicz MS et al (2013) Human mitochondrial RNA decay mediated by PNPase-hSuv3 complex takes place in distinct foci. Nucleic Acids Res 41:1223–1240.  https://doi.org/10.1093/nar/gks1130 CrossRefPubMedGoogle Scholar
  26. Bratic A, Larsson N-G (2013) The role of mitochondria in aging. J Clin Invest 123:951–957.  https://doi.org/10.1172/JCI64125 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bratic A, Wredenberg A, Grönke S et al (2011) The bicoid stability factor controls polyadenylation and expression of specific mitochondrial mRNAs in Drosophila melanogaster. PLoS Genet 7:e1002324.  https://doi.org/10.1371/journal.pgen.1002324 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bratic A, Kauppila TES, Macao B et al (2015) Complementation between polymerase- and exonuclease-deficient mitochondrial DNA polymerase mutants in genomically engineered flies. Nat Commun 6:8808.  https://doi.org/10.1038/ncomms9808 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Bratic A, Clemente P, Calvo-Garrido J et al (2016) Mitochondrial polyadenylation is a one-step process required for mRNA integrity and tRNA maturation. PLoS Genet 12:e1006028.  https://doi.org/10.1371/journal.pgen.1006028 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Brown TA, Tkachuk AN, Shtengel G et al (2011) Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 31:4994–5010.  https://doi.org/10.1128/MCB.05694-11 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Bruni F, Manzari C, Filice M et al (2012) D-MTERF5 is a novel factor modulating transcription in Drosophila mitochondria. Mitochondrion 12:492–499.  https://doi.org/10.1016/j.mito.2012.06.010 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Bruni F, Gramegna P, Oliveira JMA et al (2013) REXO2 is an oligoribonuclease active in human mitochondria. PLoS One 8:e64670.  https://doi.org/10.1371/journal.pone.0064670 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Brzezniak LK, Bijata M, Szczesny RJ, Stepien PP (2011) Involvement of human ELAC2 gene product in 3′ end processing of mitochondrial tRNAs. RNA Biol 8:616–626.  https://doi.org/10.4161/rna.8.4.15393 CrossRefPubMedGoogle Scholar
  34. Butow RA, Zhu H, Perlman P, Conrad-Webb H (1989) The role of a conserved dodecamer sequence in yeast mitochondrial gene expression. Genome 31:757–760CrossRefPubMedGoogle Scholar
  35. Calvo SE, Clauser KR, Mootha VK (2015) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44:D1251–D1257.  https://doi.org/10.1093/nar/gkv1003 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chandel NS (2015) Evolution of mitochondria as signaling organelles. Cell Metab 22:204–206.  https://doi.org/10.1016/j.cmet.2015.05.013 CrossRefPubMedGoogle Scholar
  37. Chang DD, Clayton DA (1984) Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA. Cell 36:635–643CrossRefPubMedGoogle Scholar
  38. Chateigner-Boutin A-L, Small ID (2011) Organellar RNA editing. Wiley Interdiscip Rev RNA 2:493–506.  https://doi.org/10.1002/wrna.72 CrossRefPubMedGoogle Scholar
  39. Chen H-W, Rainey RN, Balatoni CE et al (2006) Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 26:8475–8487.  https://doi.org/10.1128/MCB.01002-06 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Chen P-L, Chen C-F, Chen Y et al (2013) Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene 32:1193–1201.  https://doi.org/10.1038/onc.2012.120 CrossRefPubMedGoogle Scholar
  41. Chujo T, Ohira T, Sakaguchi Y et al (2012) LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria. Nucleic Acids Res 40:8033–8047.  https://doi.org/10.1093/nar/gks506 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Clemente P, Pajak A, Laine I et al (2015) SUV3 helicase is required for correct processing of mitochondrial transcripts. Nucleic Acids Res 43:7398–7413.  https://doi.org/10.1093/nar/gkv692 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Conrad-Webb H, Perlman PS, Zhu H, Butow RA (1990) The nuclear SUV3-1 mutation affects a variety of post-transcriptional processes in yeast mitochondria. Nucleic Acids Res 18:1369–1376CrossRefPubMedPubMedCentralGoogle Scholar
  44. Copeland WC (2014) Defects of mitochondrial DNA replication. J Child Neurol 29:1216–1224.  https://doi.org/10.1177/0883073814537380 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Crosby AH, Patel H, Chioza BA et al (2010) Defective mitochondrial mRNA maturation is associated with spastic ataxia. Am J Hum Genet 87:655–660.  https://doi.org/10.1016/j.ajhg.2010.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Cymerman IA, Chung I, Beckmann BM et al (2008) EXOG, a novel paralog of endonuclease G in higher eukaryotes. Nucleic Acids Res 36:1369–1379.  https://doi.org/10.1093/nar/gkm1169 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Dairaghi DJ, Shadel GS, Clayton DA (1995) Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J Mol Biol 249:11–28.  https://doi.org/10.1006/jmbi.1995.9889 CrossRefPubMedGoogle Scholar
  48. DeLuca SZ, O’Farrell PH (2012) Barriers to male transmission of mitochondrial DNA in sperm development. Dev Cell 22:660–668.  https://doi.org/10.1016/j.devcel.2011.12.021 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Dmochowska A, Kalita K, Krawczyk M et al (1999) A human putative Suv3-like RNA helicase is conserved between Rhodobacter and all eukaryotes. Acta Biochim Pol 46:155–162PubMedGoogle Scholar
  50. Dubrovsky EB, Dubrovskaya VA, Levinger L et al (2004) Drosophila RNase Z processes mitochondrial and nuclear pre-tRNA 3′ ends in vivo. Nucleic Acids Res 32:255–262.  https://doi.org/10.1093/nar/gkh182 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Dziembowski A, Piwowarski J, Hoser R et al (2003) The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J Biol Chem 278:1603–1611.  https://doi.org/10.1074/jbc.M208287200 CrossRefPubMedGoogle Scholar
  52. Ekstrand M, Falkenberg M, Rantanen A et al (2004) Mitochondrial transcription factor a regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944.  https://doi.org/10.1093/hmg/ddh109 CrossRefPubMedGoogle Scholar
  53. el Meziane A, Callen JC, Mounolou JC (1989) Mitochondrial gene expression during Xenopus laevis development: a molecular study. EMBO J 8:1649–1655PubMedPubMedCentralCrossRefGoogle Scholar
  54. Falk MJ, Gai X, Shigematsu M et al (2016) A novel HSD17B10 mutation impairing the activities of the mitochondrial RNase P complex causes X-linked intractable epilepsy and neurodevelopmental regression. RNA Biol 13:477–485.  https://doi.org/10.1080/15476286.2016.1159381 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Falkenberg M, Gaspari M, Rantanen A et al (2002) Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 31:289–294.  https://doi.org/10.1038/ng909 CrossRefPubMedGoogle Scholar
  56. Falkenberg M, Larsson N-G, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699.  https://doi.org/10.1146/annurev.biochem.76.060305.152028 CrossRefPubMedGoogle Scholar
  57. Fernández-Vizarra E, Berardinelli A, Valente L et al (2007) Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA). J Med Genet 44:173–180.  https://doi.org/10.1136/jmg.2006.045252 CrossRefPubMedGoogle Scholar
  58. Freyer C, Park CB, Ekstrand M et al (2010) Maintenance of respiratory chain function in mouse hearts with severely impaired mtDNA transcription. Nucleic Acids Res 38:6577–6588.  https://doi.org/10.1093/nar/gkq527 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Garesse R, Kaguni LS (2005) A Drosophila model of mitochondrial DNA replication: proteins, genes and regulation. IUBMB Life 57:555–561.  https://doi.org/10.1080/15216540500215572 CrossRefPubMedGoogle Scholar
  60. Gohil VM, Nilsson R, Belcher-Timme CA et al (2010) Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. J Biol Chem 285:13742–13747.  https://doi.org/10.1074/jbc.M109.098400 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Groot GS, Flavell RA, Van Ommen GJ, Grivell LA (1974) Yeast mitochondrial RNA does not contain poly(a). Nature 252:167–169CrossRefPubMedGoogle Scholar
  62. Gustafsson CM, Falkenberg M, Larsson N-G (2016) Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem 85:133–160.  https://doi.org/10.1146/annurev-biochem-060815-014402 CrossRefPubMedGoogle Scholar
  63. Haack TB, Kopajtich R, Freisinger P et al (2013) ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet 93(2):211–223.  https://doi.org/10.1016/j.ajhg.2013.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Haag S, Sloan KE, Ranjan N et al (2016) NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J 35:2104–2119.  https://doi.org/10.15252/embj.201694885 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Harmel J, Ruzzenente B, Terzioglu M et al (2013) The leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) does not activate transcription in mammalian mitochondria. J Biol Chem 288:15510–15519.  https://doi.org/10.1074/jbc.M113.471649 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Helm M, Brulé H, Degoul F et al (1998) The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res 26:1636–1643CrossRefPubMedPubMedCentralGoogle Scholar
  67. Helm M, Giegé R, Florentz C (1999) A Watson-Crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. Biochemistry 38:13338–13346CrossRefPubMedGoogle Scholar
  68. Hillen HS, Parshin AV, Agaronyan K et al (2017) Mechanism of transcription anti-termination in human mitochondria. Cell 171:1082–1093.e13.  https://doi.org/10.1016/j.cell.2017.09.035 CrossRefPubMedGoogle Scholar
  69. Hirayama T, Matsuura T, Ushiyama S et al (2013) A poly(a)-specific ribonuclease directly regulates the poly(a) status of mitochondrial mRNA in Arabidopsis. Nat Commun 4:2247.  https://doi.org/10.1038/ncomms3247 CrossRefPubMedGoogle Scholar
  70. Hoffmann B, Nickel J, Speer F, Schafer B (2008) The 3′ ends of mature transcripts are generated by a processosome complex in fission yeast mitochondria. J Mol Biol 377:1024–1037.  https://doi.org/10.1016/j.jmb.2008.01.038 CrossRefPubMedGoogle Scholar
  71. Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136:763–776.  https://doi.org/10.1016/j.cell.2009.01.019 CrossRefPubMedGoogle Scholar
  72. Hui MP, Foley PL, Belasco JG (2014) Messenger RNA degradation in bacterial cells. Annu Rev Genet 48:537–559.  https://doi.org/10.1146/annurev-genet-120213-092340 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Hyvärinen AK, Pohjoismäki JLO, Reyes A et al (2007) The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA. Nucleic Acids Res 35:6458–6474.  https://doi.org/10.1093/nar/gkm676 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Iborra FJ, Kimura H, Cook PR (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol 2:9.  https://doi.org/10.1186/1741-7007-2-9 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Iwata S, Lee JW, Okada K et al (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281:64–71CrossRefPubMedGoogle Scholar
  76. Jacob ST, Schindler DG (1972) Polyriboadenylate polymerase solubilized from rat liver mitochondria. Biochem Biophys Res Commun 48:126–134CrossRefPubMedGoogle Scholar
  77. Jemt E, Persson Ö, Shi Y et al (2015) Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucleic Acids Res 43:9262–9275.  https://doi.org/10.1093/nar/gkv804 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Jourdain AA, Koppen M, Wydro M et al (2013) GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab 17:399–410.  https://doi.org/10.1016/j.cmet.2013.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Jourdain AA, Koppen M, Rodley CD et al (2015) A mitochondria-specific isoform of FASTK is present in mitochondrial RNA granules and regulates gene expression and function. Cell Rep 10:1110–1121.  https://doi.org/10.1016/j.celrep.2015.01.063 CrossRefPubMedGoogle Scholar
  80. Jourdain AA, Boehm E, Maundrell K, Martinou J-C (2016) Mitochondrial RNA granules: compartmentalizing mitochondrial gene expression. J Cell Biol 212:611–614.  https://doi.org/10.1083/jcb.201507125 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Jourdain AA, Popow J, la Fuente De MA, et al (2017) The FASTK family of proteins: emerging regulators of mitochondrial RNA biology. Nucleic Acids Res45(19):10941-10947. doi:  https://doi.org/10.1093/nar/gkx772 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kaguni LS (2004) DNA polymerase γ, the mitochondrial replicase. Annu Rev Biochem 73:293–320.  https://doi.org/10.1146/annurev.biochem.72.121801.161455 CrossRefPubMedGoogle Scholar
  83. Kalckar H (1939) The nature of phosphoric esters formed in kidney extracts. Biochem J 33:631–641CrossRefPubMedPubMedCentralGoogle Scholar
  84. Karasik A, Shanmuganathan A, Howard MJ et al (2016) Nuclear protein-only ribonuclease P2 structure and biochemical characterization provide insight into the conserved properties of tRNA 5′ end processing enzymes. J Mol Biol 428:26–40.  https://doi.org/10.1016/j.jmb.2015.11.025 CrossRefPubMedGoogle Scholar
  85. Kauppila TES, Kauppila JHK, Larsson N-G (2017) Mammalian mitochondria and aging: An update. Cell Metab 25:57–71CrossRefGoogle Scholar
  86. Kolesnikov AA, Gerasimov ES (2012) Diversity of mitochondrial genome organization. Biochemistry (Mosc) 77:1424–1435.  https://doi.org/10.1134/S0006297912130020 CrossRefGoogle Scholar
  87. Kruse B, Narasimhan N, Attardi G (1989) Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 58:391–397CrossRefPubMedGoogle Scholar
  88. Kühl I, Kukat C, Ruzzenente B et al (2014) POLRMT does not transcribe nuclear genes. Nature 514:E7–E11.  https://doi.org/10.1038/nature13690 CrossRefPubMedGoogle Scholar
  89. Kukat C, Larsson N-G (2013) mtDNA makes a U-turn for the mitochondrial nucleoid. Trends Cell Biol 23:457–463.  https://doi.org/10.1016/j.tcb.2013.04.009 CrossRefPubMedGoogle Scholar
  90. Kukat C, Wurm CA, Spåhr H et al (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108:13534–13539.  https://doi.org/10.1073/pnas.1109263108 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Kukat C, Davies KM, Wurm CA et al (2015) Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc Natl Acad Sci U S A 112:11288–11293.  https://doi.org/10.1073/pnas.1512131112 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Ladoukakis ED, Zouros E (2017) Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. J Biol Res (Thessalon) 24:2.  https://doi.org/10.1186/s40709-017-0060-4 CrossRefGoogle Scholar
  93. Lagouge M, Mourier A, Lee HJ et al (2015) SLIRP regulates the rate of mitochondrial protein synthesis and protects LRPPRC from degradation. PLoS Genet 11:e1005423.  https://doi.org/10.1371/journal.pgen.1005423 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Lakshmipathy U, Campbell C (1999) The human DNA ligase III gene encodes nuclear and mitochondrial proteins. Mol Cell Biol 19:3869–3876CrossRefPubMedPubMedCentralGoogle Scholar
  95. Lane N (2017) Serial endosymbiosis or singular event at the origin of eukaryotes? J Theor Biol 434:58–67.  https://doi.org/10.1016/j.jtbi.2017.04.031 CrossRefPubMedGoogle Scholar
  96. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934.  https://doi.org/10.1038/nature09486 CrossRefPubMedGoogle Scholar
  97. Lapkouski M, Hallberg BM (2015) Structure of mitochondrial poly(a) RNA polymerase reveals the structural basis for dimerization, ATP selectivity and the SPAX4 disease phenotype. Nucleic Acids Res 43:9065–9075.  https://doi.org/10.1093/nar/gkv861 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Larsson N-G (2010) Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79:683–706.  https://doi.org/10.1146/annurev-biochem-060408-093701 CrossRefPubMedGoogle Scholar
  99. Larsson N-G, Oldfors A, Garman JD et al (1997) Down-regulation of mitochondrial transcription factor a during spermatogenesis in humans. Hum Mol Genet 6:185–191CrossRefPubMedGoogle Scholar
  100. Larsson N-G, Wang J, Wilhelmsson H et al (1998) Mitochondrial transcription factor a is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236.  https://doi.org/10.1038/ng0398-231 CrossRefPubMedGoogle Scholar
  101. Lee K-W, Bogenhagen DF (2014) Assignment of 2′-O-methyltransferases to modification sites on the mammalian mitochondrial large subunit 16 S ribosomal RNA (rRNA). J Biol Chem 289:24936–24942.  https://doi.org/10.1074/jbc.C114.581868 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lee K-W, Okot-Kotber C, LaComb JF, Bogenhagen DF (2013) Mitochondrial ribosomal RNA (rRNA) methyltransferase family members are positioned to modify nascent rRNA in foci near the mitochondrial DNA nucleoid. J Biol Chem 288:31386–31399.  https://doi.org/10.1074/jbc.M113.515692 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Levin L, Mishmar D (2015) A genetic view of the mitochondrial role in ageing: killing us softly. Adv Exp Med Biol 847:89–106.  https://doi.org/10.1007/978-1-4939-2404-2_4 CrossRefPubMedGoogle Scholar
  104. Levy S, Allerston CK, Liveanu V et al (2016) Identification of LACTB2, a metallo-β-lactamase protein, as a human mitochondrial endoribonuclease. Nucleic Acids Res 44:1813–1832.  https://doi.org/10.1093/nar/gkw050 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Lewis DL, Farr CL, Kaguni LS (1995) Drosophila melanogaster Mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. Insect Mol Biol 4:263–278.  https://doi.org/10.1111/j.1365-2583.1995.tb00032.x CrossRefPubMedGoogle Scholar
  106. Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99.  https://doi.org/10.1038/35083620 CrossRefPubMedGoogle Scholar
  107. Lightowlers RN, Chrzanowska-Lightowlers ZMA (2013) Human pentatricopeptide proteins: only a few and what do they do? RNA Biol 10:1433–1438.  https://doi.org/10.4161/rna.24770 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Lin CL, Wang Y-T, Yang W-Z et al (2012) Crystal structure of human polynucleotide phosphorylase: insights into its domain function in RNA binding and degradation. Nucleic Acids Res 40:4146–4157.  https://doi.org/10.1093/nar/gkr1281 CrossRefPubMedGoogle Scholar
  109. Litonin D, Litonin D, Sologub M et al (2010) Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem 285:18129–18133.  https://doi.org/10.1074/jbc.C110.128918 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Liu P, Huang J, Zheng Q et al (2017) Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2. Protein Cell 8:735–749.  https://doi.org/10.1007/s13238-017-0448-9 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Ma H, Xu H, O’Farrell PH (2014) Transmission of mitochondrial mutations and action of purifying selection in Drosophila melanogaster. Nat Genet 46:393–397.  https://doi.org/10.1038/ng.2919 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Macao B, Uhler JP, Siibak T et al (2015) The exonuclease activity of DNA polymerase γ is required for ligation during mitochondrial DNA replication. Nat Commun 6:7303.  https://doi.org/10.1038/ncomms8303 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Malarkey CS, Bestwick M, Kuhlwilm JE et al (2012) Transcriptional activation by mitochondrial transcription factor a involves preferential distortion of promoter DNA. Nucleic Acids Res 40:614–624.  https://doi.org/10.1093/nar/gkr787 CrossRefPubMedGoogle Scholar
  114. Matsushima Y, Matsumura K, Ishii S et al (2003) Functional domains of chicken mitochondrial transcription factor a for the maintenance of mitochondrial DNA copy number in lymphoma cell line DT40. J Biol Chem 278:31149–31158.  https://doi.org/10.1074/jbc.M303842200 CrossRefPubMedGoogle Scholar
  115. Matsushima Y, Hirofuji Y, Aihara M et al (2017) Drosophila protease ClpXP specifically degrades DmLRPPRC1 controlling mitochondrial mRNA and translation. Sci Rep 7:8315.  https://doi.org/10.1038/s41598-017-08088-6 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Mercer TR, Neph S, Dinger ME et al (2011) The human mitochondrial transcriptome. Cell 146:645–658.  https://doi.org/10.1016/j.cell.2011.06.051 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Metodiev MD, Lesko N, Park CB et al (2009) Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab 9:386–397.  https://doi.org/10.1016/j.cmet.2009.03.001 CrossRefPubMedGoogle Scholar
  118. Metodiev MD, Spåhr H, Polosa PL et al (2014) NSUN4 dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet 10:e1004110.  https://doi.org/10.1371/journal.pgen.1004110 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Metodiev MD, Thompson K, Alston CL et al (2016) Recessive mutations in TRMT10C cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies. Am J Hum Genet 98:993–1000.  https://doi.org/10.1016/j.ajhg.2016.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Mili S, Piñol-Roma S (2003) LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs. Mol Cell Biol 23:4972–4982.  https://doi.org/10.1128/MCB.23.14.4972-4982.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Minczuk M, He J, He J et al (2011) TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res 39:4284–4299.  https://doi.org/10.1093/nar/gkq1224 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Mishra P, Chan DC (2014) Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15:634–646.  https://doi.org/10.1038/nrm3877 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148CrossRefPubMedGoogle Scholar
  124. Montoya J, Christianson TW, Levens D et al (1982) Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci U S A 79:7195–7199CrossRefPubMedPubMedCentralGoogle Scholar
  125. Mootha VK, Lepage P, Miller K et al (2003) Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci U S A 100:605–610.  https://doi.org/10.1073/pnas.242716699 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Mourier A, Ruzzenente B, Brandt T et al (2014) Loss of LRPPRC causes ATP synthase deficiency. Hum Mol Genet 23:2580–2592.  https://doi.org/10.1093/hmg/ddt652 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Nagaike T, Suzuki T, Tomari Y et al (2001) Identification and characterization of mammalian mitochondrial tRNA nucleotidyltransferases. J Biol Chem 276:40041–40049.  https://doi.org/10.1074/jbc.M106202200 CrossRefPubMedGoogle Scholar
  128. Nagaike T, Suzuki T, Katoh T, Ueda T (2005) Human mitochondrial mRNAs are stabilized with polyadenylation regulated by mitochondria-specific poly(a) polymerase and polynucleotide phosphorylase. J Biol Chem 280:19721–19727.  https://doi.org/10.1074/jbc.M500804200 CrossRefPubMedGoogle Scholar
  129. Nagao A, Hino Shigi N, Suzuki T (2008) Measuring mRNA decay in human mitochondria. Meth Enzymol 447:489–499.  https://doi.org/10.1016/S0076-6879(08)02223-4 CrossRefPubMedGoogle Scholar
  130. Nouws J, Goswami AV, Bestwick M et al (2016) Mitochondrial ribosomal protein L12 is required for POLRMT stability and exists as two forms generated by alternative proteolysis during import. J Biol Chem 291:989–997.  https://doi.org/10.1074/jbc.M115.689299 CrossRefPubMedGoogle Scholar
  131. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159.  https://doi.org/10.1016/j.cell.2012.02.035 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Ojala D, Merkel C, Gelfand R, Attardi G (1980) The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell 22:393–403.  https://doi.org/10.1016/0092-8674(80)90350-5 CrossRefPubMedGoogle Scholar
  133. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474.  https://doi.org/10.1038/290470a0 CrossRefPubMedGoogle Scholar
  134. Parisi MA, Clayton DA (1991) Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252:965–969CrossRefPubMedGoogle Scholar
  135. Parisi MA, Xu B, Clayton DA (1993) A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol Cell Biol 13:1951–1961CrossRefPubMedPubMedCentralGoogle Scholar
  136. Patton JR, Bykhovskaya Y, Mengesha E et al (2005) Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of pseudouridylation. J Biol Chem 280:19823–19828.  https://doi.org/10.1074/jbc.M500216200 CrossRefPubMedGoogle Scholar
  137. Pearce SF, Rebelo-Guiomar P, D’Souza AR et al (2017) Regulation of mammalian mitochondrial gene expression: recent advances. Trends Biochem Sci 42:625–639.  https://doi.org/10.1016/j.tibs.2017.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Pham XH, Farge G, Shi Y et al (2006) Conserved sequence box II directs transcription termination and primer formation in mitochondria. J Biol Chem 281:24647–24652.  https://doi.org/10.1074/jbc.M602429200 CrossRefPubMedGoogle Scholar
  139. Piechota J, Tomecki R, Gewartowski K et al (2006) Differential stability of mitochondrial mRNA in HeLa cells. Acta Biochim Pol 53:157–168PubMedGoogle Scholar
  140. Popow J, Alleaume A-M, Curk T et al (2015) FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation. RNA 21(11):1873–1884.  https://doi.org/10.1261/rna.052365.115 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Posse V, Gustafsson CM (2017) Human mitochondrial transcription factor B2 is required for promoter melting during initiation of transcription. J Biol Chem 292:2637–2645.  https://doi.org/10.1074/jbc.M116.751008 CrossRefPubMedGoogle Scholar
  142. Posse V, Shahzad S, Falkenberg M et al (2015) TEFM is a potent stimulator of mitochondrial transcription elongation in vitro. Nucleic Acids Res 43:2615–2624.  https://doi.org/10.1093/nar/gkv105 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Puebla-Osorio N, Lacey DB, Alt FW, Zhu C (2006) Early embryonic lethality due to targeted inactivation of DNA ligase III. Mol Cell Biol 26:3935–3941.  https://doi.org/10.1128/MCB.26.10.3935-3941.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Rackham O, Filipovska A (2012) The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. Biochim Biophys Acta 1819:1008–1016.  https://doi.org/10.1016/j.bbagrm.2011.10.007 CrossRefPubMedGoogle Scholar
  145. Rackham O, Busch JD, Matic S et al (2016) Hierarchical RNA processing is required for mitochondrial ribosome assembly. Cell Rep 16:1874–1890.  https://doi.org/10.1016/j.celrep.2016.07.031 CrossRefPubMedGoogle Scholar
  146. Ramachandran A, Basu U, Sultana S et al (2017) Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation. Nucleic Acids Res 45:861–874.  https://doi.org/10.1093/nar/gkw1157 CrossRefPubMedGoogle Scholar
  147. Rantanen A, Jansson M, Oldfors A, Larsson N-G (2001) Downregulation of Tfam and mtDNA copy number during mammalian spermatogenesis. Mamm Genome 12:787–792CrossRefPubMedGoogle Scholar
  148. Reinhard L, Sridhara S, Hallberg BM (2017) The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria. Nucleic Acids Res 45:12469–12480.  https://doi.org/10.1093/nar/gkx902 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Ringel R, Sologub M, Morozov YI et al (2011) Structure of human mitochondrial RNA polymerase. Nature 478:269–273.  https://doi.org/10.1038/nature10435 CrossRefPubMedGoogle Scholar
  150. Roberti M, Bruni F, Polosa PL et al (2006) The Drosophila termination factor DmTTF regulates in vivo mitochondrial transcription. Nucleic Acids Res 34:2109–2116.  https://doi.org/10.1093/nar/gkl181 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Rorbach J, Nicholls TJJ, Minczuk M (2011) PDE12 removes mitochondrial RNA poly(a) tails and controls translation in human mitochondria. Nucleic Acids Res 39:7750–7763.  https://doi.org/10.1093/nar/gkr470 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Rorbach J, Boesch P, Gammage PA et al (2014) MRM2 and MRM3 are involved in biogenesis of the large subunit of the mitochondrial ribosome. Mol Biol Cell 25:2542–2555.  https://doi.org/10.1091/mbc.E14-01-0014 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Rorbach J, Gao F, Powell CA et al (2016) Human mitochondrial ribosomes can switch their structural RNA composition. Proc Natl Acad Sci U S A 113:12198–12201.  https://doi.org/10.1073/pnas.1609338113 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Rossmanith W (2012) Of P and Z: mitochondrial tRNA processing enzymes. Biochim Biophys Acta 1819:1017–1026.  https://doi.org/10.1016/j.bbagrm.2011.11.003 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Ruzzenente B, Metodiev MD, Wredenberg A et al (2012) LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J 31:443–456.  https://doi.org/10.1038/emboj.2011.392 CrossRefPubMedGoogle Scholar
  156. Safra M, Sas-Chen A, Nir R et al (2017) The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 12:311.  https://doi.org/10.1038/nature24456 CrossRefGoogle Scholar
  157. Salinas-Giegé T, Cavaiuolo M, Cognat V et al (2017) Polycytidylation of mitochondrial mRNAs in Chlamydomonas reinhardtii. Nucleic Acids Res 45:12963–12973.  https://doi.org/10.1093/nar/gkx903 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Sanchez MIGL, Mercer TR, Davies SMK et al (2011) RNA processing in human mitochondria. Cell Cycle 10:2904–2916.  https://doi.org/10.4161/cc.10.17.17060 CrossRefPubMedGoogle Scholar
  159. Sasarman F, Brunel-Guitton C, Antonicka H et al (2010) LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell 21:1315–1323.  https://doi.org/10.1091/mbc.E10-01-0047 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Sato M, Sato K (2013) Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim Biophys Acta 1833:1979–1984.  https://doi.org/10.1016/j.bbamcr.2013.03.010 CrossRefPubMedGoogle Scholar
  161. Satoh M, Kuroiwa T (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res 196:137–140.  https://doi.org/10.1016/0014-4827(91)90467-9 CrossRefPubMedGoogle Scholar
  162. Schuster G, Stern D (2009) RNA polyadenylation and decay in mitochondria and chloroplasts. Prog Mol Biol Transl Sci 85:393–422.  https://doi.org/10.1016/S0079-6603(08)00810-6 CrossRefPubMedGoogle Scholar
  163. Schwanhäusser B, Busse D, Li N et al (2013) Corrigendum: global quantification of mammalian gene expression control. Nature 495:126–127.  https://doi.org/10.1038/nature11848 CrossRefPubMedGoogle Scholar
  164. Seidel-Rogol BL, McCulloch V, Shadel GS (2003) Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet 33:23–24.  https://doi.org/10.1038/ng1064 CrossRefPubMedGoogle Scholar
  165. Sen A, Karasik A, Shanmuganathan A et al (2016) Loss of the mitochondrial protein-only ribonuclease P complex causes aberrant tRNA processing and lethality in Drosophila. Nucleic Acids Res 44:6409–6422.  https://doi.org/10.1093/nar/gkw338 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Shafqat N, Marschall H-U, Filling C et al (2003) Expanded substrate screenings of human and Drosophila type 10 17β-hydroxysteroid dehydrogenases (HSDs) reveal multiple specificities in bile acid and steroid hormone metabolism: characterization of multifunctional 3α/7α/7β/17β/20β/21-HSD. Biochem J 376:49–60. doi:  https://doi.org/10.1042/BJ20030877 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Sheng Z-H, Cai Q (2012) Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 13:77–93.  https://doi.org/10.1038/nrn3156 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Shi Y, Posse V, Zhu X et al (2016) Mitochondrial transcription termination factor 1 directs polar replication fork pausing. Nucleic Acids Res 44:5732–5742.  https://doi.org/10.1093/nar/gkw302 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 77:87–111.  https://doi.org/10.1016/S0070-2153(06)77004-1 CrossRefPubMedGoogle Scholar
  170. Siira SJ, Spåhr H, Shearwood A-MJ et al (2017) LRPPRC-mediated folding of the mitochondrial transcriptome. Nat Commun 8:1532.  https://doi.org/10.1038/s41467-017-01221-z CrossRefPubMedPubMedCentralGoogle Scholar
  171. Sologub M, Litonin D, Anikin M et al (2009) TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase. Cell 139:934–944.  https://doi.org/10.1016/j.cell.2009.10.031 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Spåhr H, Rozanska A, Li X et al (2016) SLIRP stabilizes LRPPRC via an RRM-PPR protein interface. Nucleic Acids Res 44:6868–6882.  https://doi.org/10.1093/nar/gkw575 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Stepien PP, Margossian SP, Landsman D, Butow RA (1992) The yeast nuclear gene suv3 affecting mitochondrial post-transcriptional processes encodes a putative ATP-dependent RNA helicase. Proc Natl Acad Sci U S A 89:6813–6817CrossRefPubMedPubMedCentralGoogle Scholar
  174. Sterky FH, Ruzzenente B, Gustafsson CM et al (2010) LRPPRC is a mitochondrial matrix protein that is conserved in metazoans. Biochem Biophys Res Commun 398:759–764.  https://doi.org/10.1016/j.bbrc.2010.07.019 CrossRefPubMedGoogle Scholar
  175. Stewart JB, Beckenbach AT (2009) Characterization of mature mitochondrial transcripts in Drosophila, and the implications for the tRNA punctuation model in arthropods. Gene 445:49–57.  https://doi.org/10.1016/j.gene.2009.06.006 CrossRefPubMedGoogle Scholar
  176. Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16:530–542.  https://doi.org/10.1038/nrg3966 CrossRefPubMedGoogle Scholar
  177. Stewart JB, Larsson N-G (2014) Keeping mtDNA in shape between generations. PLoS Genet 10:e1004670.  https://doi.org/10.1371/journal.pgen.1004670 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Stewart JB, Freyer C, Elson JL, Larsson N-G (2008) Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nat Rev Genet 9:657–662.  https://doi.org/10.1038/nrg2396 CrossRefPubMedGoogle Scholar
  179. Stoll B, Zendler D, Binder S (2014) RNA processing factor 7 and polynucleotide phosphorylase are necessary for processing and stability of nad2 mRNA in Arabidopsis mitochondria. RNA Biol 11:968–976.  https://doi.org/10.4161/rna.29781 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Sun Y, Kurisaki M, Hashiguchi Y, Kumazawa Y (2017) Variation and evolution of polyadenylation profiles in sauropsid mitochondrial mRNAs as deduced from the high-throughput RNA sequencing. BMC Genomics 18:665.  https://doi.org/10.1186/s12864-017-4080-0 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Sutovsky P, Moreno RD, Ramalho-Santos J et al (1999) Ubiquitin tag for sperm mitochondria. Nature 402:371–372.  https://doi.org/10.1038/46466 CrossRefPubMedGoogle Scholar
  182. Suzuki T, Suzuki T (2014) A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Res 42:7346–7357.  https://doi.org/10.1093/nar/gku390 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Szczesny RJ, Borowski LS, Brzezniak LK et al (2010) Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucleic Acids Res 38:279–298.  https://doi.org/10.1093/nar/gkp903 CrossRefPubMedGoogle Scholar
  184. Takemoto C, Spremulli LL, Benkowski LA et al (2009) Unconventional decoding of the AUA codon as methionine by mitochondrial tRNAMet with the anticodon f5CAU as revealed with a mitochondrial in vitro translation system. Nucleic Acids Res 37:1616–1627.  https://doi.org/10.1093/nar/gkp001 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZMA (2010) Human mitochondrial mRNAs—like members of all families, similar but different. Biochim Biophys Acta 1797:1081–1085.  https://doi.org/10.1016/j.bbabio.2010.02.036 CrossRefPubMedPubMedCentralGoogle Scholar
  186. Terzioglu M, Ruzzenente B, Harmel J et al (2013) MTERF1 binds mtDNA to prevent transcriptional interference at the light-strand promoter but is dispensable for rRNA gene transcription regulation. Cell Metab 17:618–626.  https://doi.org/10.1016/j.cmet.2013.03.006 CrossRefPubMedGoogle Scholar
  187. Tomecki R, Dmochowska A, Gewartowski K et al (2004) Identification of a novel human nuclear-encoded mitochondrial poly(a) polymerase. Nucleic Acids Res 32:6001–6014.  https://doi.org/10.1093/nar/gkh923 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Torregrosa-Muñumer R, Forslund JME, Goffart S et al (2017) PrimPol is required for replication reinitiation after mtDNA damage. Proc Natl Acad Sci U S A 114:11398–11403.  https://doi.org/10.1073/pnas.1705367114 CrossRefPubMedPubMedCentralGoogle Scholar
  189. Tsukihara T, Aoyama H, Yamashita E et al (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269:1069–1074.  https://doi.org/10.1126/science.7652554 CrossRefPubMedGoogle Scholar
  190. Tu Y-T, Barrientos A (2015) The human mitochondrial DEAD-box protein DDX28 resides in RNA granules and functions in mitoribosome assembly. Cell Rep 10:854–864.  https://doi.org/10.1016/j.celrep.2015.01.033 CrossRefGoogle Scholar
  191. Uhler JP, Thörn C, Nicholls TJJ et al (2016) MGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication. Nucleic Acids Res 44:5861–5871.  https://doi.org/10.1093/nar/gkw468 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Van Haute L, Pearce SF, Powell CA et al (2015) Mitochondrial transcript maturation and its disorders. J Inherit Metab Dis 38:655–680.  https://doi.org/10.1007/s10545-015-9859-z CrossRefPubMedPubMedCentralGoogle Scholar
  193. Van Haute L, Dietmann S, Kremer L et al (2016) Deficient methylation and formylation of mt-tRNAMet wobble cytosine in a patient carrying mutations in NSUN3. Nat Commun 7:12039.  https://doi.org/10.1038/ncomms12039 CrossRefPubMedPubMedCentralGoogle Scholar
  194. Vilardo E, Rossmanith W (2015) Molecular insights into HSD10 disease: impact of SDR5C1 mutations on the human mitochondrial RNase P complex. Nucleic Acids Res 43:5112–5119.  https://doi.org/10.1093/nar/gkv408 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Vilardo E, Nachbagauer C, Buzet A et al (2012) A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase—extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res 40:11583–11593.  https://doi.org/10.1093/nar/gks910 CrossRefPubMedPubMedCentralGoogle Scholar
  196. von Ameln S, Wang G, Boulouiz R et al (2012) A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am J Hum Genet 91:919–927.  https://doi.org/10.1016/j.ajhg.2012.09.002 CrossRefGoogle Scholar
  197. Wai T, Ao A, Zhang X et al (2010) The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod 83:52–62.  https://doi.org/10.1095/biolreprod.109.080887 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Wang DD-H, Shu Z, Lieser SA et al (2009) Human mitochondrial SUV3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3′-to-5′ directionality. J Biol Chem 284:20812–20821.  https://doi.org/10.1074/jbc.M109.009605 CrossRefPubMedPubMedCentralGoogle Scholar
  199. Wang G, Chen H-W, Oktay Y et al (2010) PNPASE regulates RNA import into mitochondria. Cell 142:456–467.  https://doi.org/10.1016/j.cell.2010.06.035 CrossRefPubMedPubMedCentralGoogle Scholar
  200. Wang DD-H, Guo XE, Modrek AS et al (2014) Helicase SUV3, polynucleotide phosphorylase, and mitochondrial polyadenylation polymerase form a transient complex to modulate mitochondrial mRNA polyadenylated tail lengths in response to energetic changes. J Biol Chem 289:16727–16735.  https://doi.org/10.1074/jbc.M113.536540 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Wanrooij PH, Uhler JP, Simonsson T et al (2010) G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc Natl Acad Sci U S A 107:16072–16077.  https://doi.org/10.1073/pnas.1006026107 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Wanrooij PH, Uhler JP, Shi Y et al (2012) A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop. Nucleic Acids Res 40:10334–10344.  https://doi.org/10.1093/nar/gks802 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Weill L, Belloc E, Bava F-A, Méndez R (2012) Translational control by changes in poly(a) tail length: recycling mRNAs. Nat Struct Mol Biol 19:577–585.  https://doi.org/10.1038/nsmb.2311 CrossRefPubMedGoogle Scholar
  204. Wiedemann N, Pfanner N (2017) Mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86:685–714.  https://doi.org/10.1146/annurev-biochem-060815-014352 CrossRefPubMedGoogle Scholar
  205. Wilson WC, Hornig-Do HT, Bruni F et al (2014) A human mitochondrial poly(a) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression. Hum Mol Genet 23:6345–6355.  https://doi.org/10.1093/hmg/ddu352 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Wolf AR, Mootha VK (2014) Functional genomic analysis of human mitochondrial RNA processing. Cell Rep 7:918–931.  https://doi.org/10.1016/j.celrep.2014.03.035 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Wolff JN, Nafisinia M, Sutovsky P, Ballard JWO (2013) Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans. Heredity (Edinb) 110:57–62.  https://doi.org/10.1038/hdy.2012.60 CrossRefGoogle Scholar
  208. Wydro M, Bobrowicz A, Temperley RJ et al (2010) Targeting of the cytosolic poly(a) binding protein PABPC1 to mitochondria causes mitochondrial translation inhibition. Nucleic Acids Res 38:3732–3742.  https://doi.org/10.1093/nar/gkq068 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Xie X, Dubrovsky EB (2015) Knockout of Drosophila RNase ZL impairs mitochondrial transcript processing, respiration and cell cycle progression. Nucleic Acids Res 43:10364–10375.  https://doi.org/10.1093/nar/gkv1149 CrossRefPubMedPubMedCentralGoogle Scholar
  210. Xu B, Clayton DA (1995) A persistent RNA-DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence. Mol Cell Biol 15:580–589CrossRefPubMedPubMedCentralGoogle Scholar
  211. Xu B, Clayton DA (1996) RNA-DNA hybrid formation at the human mitochondrial heavy-strand origin ceases at replication start sites: an implication for RNA-DNA hybrids serving as primers. EMBO J 15:3135–3143PubMedPubMedCentralCrossRefGoogle Scholar
  212. Xu F, Ackerley C, Maj MC et al (2008) Disruption of a mitochondrial RNA-binding protein gene results in decreased cytochrome b expression and a marked reduction in ubiquinol-cytochrome c reductase activity in mouse heart mitochondria. Biochem J 416:15–26.  https://doi.org/10.1042/BJ20080847 CrossRefPubMedGoogle Scholar
  213. Xu F, Addis JBL, Cameron JM, Robinson BH (2012) LRPPRC mutation suppresses cytochrome oxidase activity by altering mitochondrial RNA transcript stability in a mouse model. Biochem J 441:275–283.  https://doi.org/10.1042/BJ20110985 CrossRefPubMedGoogle Scholar
  214. Yakubovskaya E, Mejia E, Byrnes J et al (2010) Helix unwinding and base flipping enable human MTERF1 to terminate mitochondrial transcription. Cell 141:982–993.  https://doi.org/10.1016/j.cell.2010.05.018 CrossRefPubMedPubMedCentralGoogle Scholar
  215. Yang S-Y, He X-Y, Isaacs C et al (2014) Roles of 17β-hydroxysteroid dehydrogenase type 10 in neurodegenerative disorders. J Steroid Biochem Mol Biol 143:460–472.  https://doi.org/10.1016/j.jsbmb.2014.07.001 CrossRefPubMedGoogle Scholar
  216. Young MJ, Copeland WC (2016) Human mitochondrial DNA replication machinery and disease. Curr Opin Genet Dev 38:52–62.  https://doi.org/10.1016/j.gde.2016.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Zaganelli S, Rebelo-Guiomar P, Maundrell K et al (2017) The pseudouridine synthase RPUSD4 is an essential component of mitochondrial RNA granules. J Biol Chem 292:4519–4532.  https://doi.org/10.1074/jbc.M116.771105 CrossRefPubMedPubMedCentralGoogle Scholar
  218. Zhu H, Conrad-Webb H, Liao XS et al (1989) Functional expression of a yeast mitochondrial intron-encoded protein requires RNA processing at a conserved dodecamer sequence at the 3′ end of the gene. Mol Cell Biol 9:1507–1512CrossRefPubMedPubMedCentralGoogle Scholar
  219. Zhu J, Vinothkumar KR, Hirst J (2016) Structure of mammalian respiratory complex I. Nature 536:354–358.  https://doi.org/10.1038/nature19095 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Zimmer SL, Schein A, Zipor G et al (2009) Polyadenylation in Arabidopsis and Chlamydomonas organelles: the input of nucleotidyltransferases, poly(a) polymerases and polynucleotide phosphorylase. Plant J 59:88–99.  https://doi.org/10.1111/j.1365-313X.2009.03853.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christoph Freyer
    • 1
  • Paula Clemente
    • 1
  • Anna Wredenberg
    • 1
  1. 1.Division of Molecular Metabolism, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden

Personalised recommendations