The Mitochondrial Transcription Machinery

  • Srdja Drakulic
  • Jorge Cuellar
  • Rui SousaEmail author
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 34)


The involvement of mitochondria in multiple cellular functions beyond generation of ATP creates a need to organize mitochondrial DNA and regulate transcription of mitochondrial genes. The mitochondrial transcription apparatus itself is encoded in the nuclear genome. The central component of this apparatus—the mitochondrial RNA polymerase (mtRNAP)—is homologous to the single-subunit RNAPs encoded by multiple bacteriophages, most notably the well-characterized RNAP encoded by the T7 bacteriophage. Biophysical and biochemical studies have revealed that structure-mechanism relationships are remarkably well-conserved between the phage and mitochondrial RNAPs, with homologous elements in both polymerase classes playing similar roles in promoter recognition, bending, melting, and transcription initiation. However, mtRNAPs are distinct from phage RNAPs, because mtRNAPs in isolation assume a “clenched” conformation in which the large DNA-binding cleft of the polymerase is occluded and other parts of the polymerase involved in promoter binding are sequestered by intramolecular interactions. Interactions between the mtRNAP and mitochondrial transcription factors alter mtRNAP structure to relieve this intramolecular sequestration and unlock the promoter-specific binding and transcriptional activity of the polymerase. There is one such factor required for mitochondrial transcription initiation in yeast and two required factors in mammalian mitochondria, which may allow for greater scope in regulation in higher vs. lower eukaryotes. Thus, mitochondrial transcription relies on an RNAP that is homologous to the phage RNAPs that can function without any accessory factors but exhibits features analogous to nuclear or bacterial transcription in that it requires additional factors to specifically initiate transcription at mitochondrial promoters. In this review, we aim to provide a comprehensive description of the general, common mitochondrial transcription mechanisms and of the variations in these transcription systems, from Saccharomyces cerevisiae to Homo sapiens.



We thank C. Mark for the editorial assistance. This work was supported by the Spanish Ministry of Economy (grant BFU2016-75984) and GM118933 (to R.S.).


  1. Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9:265–276. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alam TI et al (2003) Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31:1640–1645CrossRefPubMedGoogle Scholar
  3. Burger G, Gray MW, Forget L, Lang BF (2013) Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol 5:418–438. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Campbell CT, Kolesar JE, Kaufman BA (2012) Mitochondrial transcription factor a regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim Biophys Acta 1819:921–929. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chang DD, Clayton DA (1984) Precise identification of individual promoters for transcription of each strand of human mitochondrial DNA. Cell 36:635–643CrossRefPubMedGoogle Scholar
  6. Cheetham GM, Steitz TA (1999) Structure of a transcribing T7 RNA polymerase initiation complex. Science 286:2305–2309CrossRefPubMedGoogle Scholar
  7. Cheetham GM, Jeruzalmi D, Steitz TA (1999) Structural basis for initiation of transcription from an RNA polymerase-promoter complex. Nature 399:80–83CrossRefPubMedGoogle Scholar
  8. Chen XJ, Butow RA (2005) The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6:815–825. CrossRefPubMedGoogle Scholar
  9. Dairaghi DJ, Shadel GS, Clayton DA (1995) Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J Mol Biol 249:11–28. CrossRefPubMedGoogle Scholar
  10. Deshpande AP, Patel SS (2012) Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase. Biochim Biophys Acta 1819:930–938. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Deshpande AP, Patel SS (2014) Interactions of the yeast mitochondrial RNA polymerase with the +1 and +2 promoter bases dictate transcription initiation efficiency. Nucleic Acids Res 42:11721–11732. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Diffley JF, Stillman B (1991) A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sci U S A 88:7864–7868CrossRefPubMedPubMedCentralGoogle Scholar
  13. Diffley JF, Stillman B (1992) DNA binding properties of an HMG1-related protein from yeast mitochondria. J Biol Chem 267:3368–3374PubMedGoogle Scholar
  14. Drakulic S et al (2014) Yeast mitochondrial RNAP conformational changes are regulated by interactions with the mitochondrial transcription factor. Nucleic Acids Res 42:11246–11260. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ekstrand MI et al (2004) Mitochondrial transcription factor a regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944. CrossRefPubMedGoogle Scholar
  16. Farge G et al (2012) Protein sliding and DNA denaturation are essential for DNA organization by human mitochondrial transcription factor a. Nat Commun 3:1013. CrossRefPubMedGoogle Scholar
  17. Fisher RP, Clayton DA (1985) A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy- and light-strand promoters dissected and reconstituted in vitro. J Biol Chem 260:11330–11338PubMedGoogle Scholar
  18. Fisher RP, Topper JN, Clayton DA (1987) Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell 50:247–258CrossRefPubMedGoogle Scholar
  19. Friddle RW et al (2004) Mechanism of DNA compaction by yeast mitochondrial protein Abf2p. Biophys J 86:1632–1639. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gangelhoff TA, Mungalachetty PS, Nix JC, Churchill ME (2009) Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor a. Nucleic Acids Res 37:3153–3164. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gilkerson R, Bravo L, Garcia I, Gaytan N, Herrera A, Maldonado A, Quintanilla B (2013) The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb Perspect Biol 5:a011080. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Haag-Liautard C, Coffey N, Houle D, Lynch M, Charlesworth B, Keightley PD (2008) Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol 6:e204. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kanki T et al (2004) Architectural role of mitochondrial transcription factor a in maintenance of human mitochondrial DNA. Mol Cell Biol 24:9823–9834. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kukat C, Wurm CA, Spahr H, Falkenberg M, Larsson NG, Jakobs S (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108:13534–13539. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lu B et al (2013) Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 49:121–132. CrossRefPubMedGoogle Scholar
  26. Morozov YI, Agaronyan K, Cheung AC, Anikin M, Cramer P, Temiakov D (2014) A novel intermediate in transcription initiation by human mitochondrial RNA polymerase. Nucleic Acids Res 42:3884–3893. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Morozov YI, Parshin AV, Agaronyan K, Cheung AC, Anikin M, Cramer P, Temiakov D (2015) A model for transcription initiation in human mitochondria. Nucleic Acids Res 43:3726–3735. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ngo HB, Kaiser JT, Chan DC (2011) The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat Struct Mol Biol 18:1290–1296. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ngo HB, Lovely GA, Phillips R, Chan DC (2014) Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation. Nat Commun 5:3077. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Paratkar S, Patel SS (2010) Mitochondrial transcription factor Mtf1 traps the unwound non-template strand to facilitate open complex formation. J Biol Chem 285:3949–3956. CrossRefPubMedGoogle Scholar
  31. Parisi MA, Clayton DA (1991) Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 252:965–969CrossRefPubMedGoogle Scholar
  32. Ramachandran A, Basu U, Sultana S, Nandakumar D, Patel SS (2016) Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation. Nucleic Acids Res. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ringel R, Sologub M, Morozov YI, Litonin D, Cramer P, Temiakov D (2011) Structure of human mitochondrial RNA polymerase. Nature 478:269–273. CrossRefPubMedGoogle Scholar
  34. Rubio-Cosials A et al (2011) Human mitochondrial transcription factor a induces a U-turn structure in the light strand promoter. Nat Struct Mol Biol 18:1281–1289. CrossRefPubMedGoogle Scholar
  35. Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274CrossRefPubMedGoogle Scholar
  36. Savkina M, Temiakov D, McAllister WT, Anikin M (2010) Multiple functions of yeast mitochondrial transcription factor Mtf1p during initiation. J Biol Chem 285:3957–3964. CrossRefPubMedGoogle Scholar
  37. Schwinghammer K, Cheung AC, Morozov YI, Agaronyan K, Temiakov D, Cramer P (2013) Structure of human mitochondrial RNA polymerase elongation complex. Nat Struct Mol Biol 20:1298–1303. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sologub M, Litonin D, Anikin M, Mustaev A, Temiakov D (2009) TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase. Cell 139:934–944CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tang GQ, Deshpande AP, Patel SS (2011) Transcription factor-dependent DNA bending governs promoter recognition by the mitochondrial RNA polymerase. J Biol Chem 286:38805–38813. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797:113–128. CrossRefPubMedGoogle Scholar
  41. Turk EM, Das V, Seibert RD, Andrulis ED (2013) The mitochondrial RNA landscape of Saccharomyces cerevisiae. PLoS One 8:e78105. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wallace DC, Chalkia D (2013) Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb Perspect Biol 5:a021220. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wen S, Gao J, Zhang L, Zhou H, Fang D, Feng S (2016) p53 increase mitochondrial copy number via up-regulation of mitochondrial transcription factor a in colorectal cancer. Oncotarget.
  44. Williamson D (2002) The curious history of yeast mitochondrial DNA. Nat Rev Genet 3:475–481. CrossRefPubMedGoogle Scholar
  45. Yakubovskaya E et al (2014) Organization of the human mitochondrial transcription initiation complex. Nucleic Acids Res 42:4100–4112. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yoshida Y et al (2002) Human mitochondrial transcription factor a binds preferentially to oxidatively damaged DNA. Biochem Biophys Res Commun 295:945–951CrossRefPubMedGoogle Scholar
  47. Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Itoh H, Kang D, Kohno K (2003) P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res 63:3729–3734PubMedGoogle Scholar
  48. Zhang F, Qi Y, Zhou K, Zhang G, Linask K, Xu H (2015) The cAMP phosphodiesterase prune localizes to the mitochondrial matrix and promotes mtDNA replication by stabilizing TFAM. EMBO Rep 16:520–527. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department for Macromolecular StructuresCentro Nacional de Biotecnología (CNB-CSIC)MadridSpain
  2. 2.Department of Biochemistry and Structural BiologyUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations