Fatigue Behavior Characterization of Superelastic Shape Memory Alloy Fiber-Reinforced Polymer Composites

Conference paper

Abstract

Fiber-reinforced polymer (FRP) composites have been frequently used for strengthening concrete structures. However, conventional FRPs exhibit brittle behavior with relatively low ultimate tensile strains and limited energy dissipation capacity, and possess limited fatigue life. Superelastic shape memory alloys (SMAs) are a class of metallic alloys that can recover strains between 6% and 8% upon load removal. SMAs possess excellent corrosion resistance, enhanced energy dissipation abilities, and high fatigue properties. Small-diameter superelastic SMA strands are new form of SMA elements. SMA strands can replace conventional fibers to produce resilient composites with enhanced ductility and deformability. These composites can be used for concrete and steel infrastructure strengthening and energy absorption applications.

References

  1. 1.
    Bank, L. C. (2012). Progressive failure and ductility of FRP composites for construction. Journal of Composites for Construction, 17(3), 406–419.CrossRefGoogle Scholar
  2. 2.
    Hurlebaus, S., & Gaul, L. (2006). Smart structure dynamics. Mechanical Systems and Signal Processing, 20(2), 255–281.CrossRefGoogle Scholar
  3. 3.
    Kim, E. H., Lee, I., Roh, J. H., Bae, J. S., Choi, I. H., & Koo, K. N. (2011). Effects of shape memory alloys on low velocity impact characteristics of composite plate. Composite Structures, 93(11), 2903–2909.CrossRefGoogle Scholar
  4. 4.
    Wierschem, N., & Andrawes, B. (2010). Superelastic SMA–FRP composite reinforcement for concrete structures. Smart Materials and Structures, 19(2), 025011.CrossRefGoogle Scholar
  5. 5.
    Jang, B. K., Koo, J. H., Toyama, N., Akimune, Y., & Kishi, T. (2001). Influence of lamination direction on fracture behavior and mechanical properties of TiNi SMA wire-embedded CFRP smart composites. SPIE’s 8th annual international symposium on smart structures and materials (pp. 188–197). International Society for Optics and Photonics.Google Scholar
  6. 6.
    Zafar, A., & Andrawes, B. (2013). Fabrication and cyclic behavior of highly ductile superelastic shape memory composites. Journal of Materials in Civil Engineering, 26(4), 622–632.CrossRefGoogle Scholar
  7. 7.
    Daghash, S. M., & Ozbulut, O. E. (2016). Characterization of superelastic shape memory alloy fiber-reinforced polymer composites under tensile cyclic loading. Materials & Design, 111, 504–512.CrossRefGoogle Scholar
  8. 8.
    Reedlunn, B., Daly, S., & Shaw, J. (2013). Superelastic shape memory alloy cables: Part I–isothermal tension experiments. International Journal of Solids and Structures, 50(20), 3009–3026.CrossRefGoogle Scholar
  9. 9.
    Wang, Z., Xu, L., Sun, X., Shi, M., & Liu, J. (2017). Fatigue behavior of glass-fiber-reinforced epoxy composites embedded with shape memory alloy wires. Composite Structures, 178, 311–319.CrossRefGoogle Scholar
  10. 10.
    Shimamoto, A., Zhao, H. Y., & Abe, H. (2004). Fatigue crack propagation and local crack-tip strain behavior in TiNi shape memory fiber reinforced composite. International Journal of Fatigue, 26(5), 533–542.CrossRefGoogle Scholar
  11. 11.
    El-Tahan, M., & Dawood, M. (2015). Fatigue behavior of a thermally-activated NiTiNb SMA-FRP patch. Smart Materials and Structures, 25(1), 015030.CrossRefGoogle Scholar
  12. 12.
    Standard, A. S. T. M. (2007). D5687/D5687M-07. Standard guide for preparation of flat composite panels with processing guidelines for specimen preparation.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations