Electrospun Nanofibre Filter Media: New Emergent Technologies and Market Perspectives

  • Ankita Poudyal
  • Gareth W. Beckermann
  • Naveen Ashok Chand
  • Iain C. Hosie
  • Adam Blake
  • Bhuvaneswari KannanEmail author


With the continual rise in the levels of urban and industrial pollution, the demand for high-efficiency electrospun nanofibre filters has never been greater. Many of the most widely recognised filter manufacturers in the world have already taken a lead in incorporating electrospun nanofibre materials into their filters. Now, the next phase of growth in this market is in the development of functional filters that selectively capture targets of interest, such as VOCs, PM2.5 particles, heavy metal ions, dyes, viruses and many other contaminants. This chapter is a summary of the emerging technologies that can be used in conjunction with electrospun nanofibres for the high-performance filtration of fine particles.


Nanofibre Filtration Pollution Electrospinning Particulate matters (PMs) VOCs MOFs MIPs Dye removals Heavy metals Filtering mechanism Nanofibre market Commercial challenges Filter media Revolution fibres 



The authors would like to thank Prof. Steve Henry, CEO of Kode Biotech at the Auckland University of Technology for his input and suggestions. We would also like to thank Callaghan Innovation, New Zealand for its extended support and funding.


  1. 1.
    Dai J et al (2015) Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China. Environ Pollut 203:116–121CrossRefPubMedGoogle Scholar
  2. 2.
    Qiu H et al (2015) Air pollution and mortality: effect modification by personal characteristics and specific cause of death in a case-only study. Environ Pollut 199:192–197CrossRefPubMedGoogle Scholar
  3. 3.
    Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367CrossRefPubMedGoogle Scholar
  4. 4.
    Barhate R, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296:1–8CrossRefGoogle Scholar
  5. 5.
    Pulliero A et al (2015) Genetic and epigenetic effects of environmental mutagens and carcinogens. Biomed Res Int 2015Google Scholar
  6. 6.
    Kannan B, Cha H, Hosie IC (2016) Electrospinning—commercial applications, challenges and opportunities. In: Fakirov S (ed) Nano-size polymers: preparation, properties, applications. Springer International, Cham, pp 309–342CrossRefGoogle Scholar
  7. 7.
    Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151–160CrossRefGoogle Scholar
  8. 8.
    Bhattarai P et al (2014) Electrospinning: how to produce nanofibers using most inexpensive technique? An insight into the real challenges of electrospinning such nanofibers and its application areas. Int J Biomed Adv Res Online J 5:2229–3809Google Scholar
  9. 9.
    Hayes TR, Hosie IC (2015) Turning Nanofibres into products: electrospinning from a manufacturer’s perspective. In: Electrospinning for high performance sensors. Springer, Cham, pp 305–329. CrossRefGoogle Scholar
  10. 10.
    Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106CrossRefPubMedGoogle Scholar
  11. 11.
    Margareth G (2013) Global market and technologies for nanofibres. BCC ResearchGoogle Scholar
  12. 12.
    Chen Z et al (2013) China tackles the health effects of air pollution. Lancet 382(9909):1959–1960CrossRefPubMedGoogle Scholar
  13. 13.
    Christine O (2013) Unearthed, in Unearthed: Greenpeace Greanpeace, UK
  14. 14.
    Quigley JT (2013) Chinese government will spend $277 billion to combat air pollution. In: The Dipolmat. The DipolmatGoogle Scholar
  15. 15.
    Andrew M (2014) U.S. Indoor Air Quality Market, B. Reaserch, Editor. United KingdomGoogle Scholar
  16. 16.
    Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos Environ 42:2895–2921CrossRefGoogle Scholar
  17. 17.
    Wania F, Mackay D (1996) Tracking the distribution of persistent organic pollutants. Environ Sci Technol 30:390A–396ACrossRefPubMedGoogle Scholar
  18. 18.
    Young Chung H (2007) Donalson Co., I., Book review: “Electrospinning of micro and nanofibers: fundamentals in separation and filtration processes”, in 2008 special bulletin. Journal of engineered fibres and fabrics: Minneapolis, p 2Google Scholar
  19. 19.
    Mukhopadhyay A (2010) Pulse-jet filtration: an effective way to control industrial pollution Part II: process characterization and evaluation of filter media. Text Prog 42:1–97CrossRefGoogle Scholar
  20. 20.
    Spurný KT (1998) Advances in aerosol filtration, p 533Google Scholar
  21. 21.
    Yao J, Bastiaansen C, Peijs T (2014) High strength and high modulus electrospun nanofibers. Fibers 2:158–186CrossRefGoogle Scholar
  22. 22.
    Liu C et al (2015) Transparent air filter for high-efficiency PM2.5 capture. Nat Commun 6:6205CrossRefPubMedGoogle Scholar
  23. 23.
    Jing L et al (2016) Electrospun polyacrylonitrile–ionic liquid nanofibers for superior PM 2.5 capture capacity. ACS Appl Mater Interfaces 8:7030–7036CrossRefPubMedGoogle Scholar
  24. 24.
    Homaeigohar S, Zillohu AU, Abdelaziz R, Hedayati MK, Elbahri M (2016) A novel nanohybrid nanofibrous adsorbent for water purification from dye pollutants, p 16Google Scholar
  25. 25.
    Li L et al (2017) Three-layer composite filter media containing electrospun polyimide nanofibers for the removal of fine particles. Fibers Polym 18:749–757CrossRefGoogle Scholar
  26. 26.
    Wang Y et al (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254CrossRefGoogle Scholar
  27. 27.
    Barr K et al (2016) Biofunctionalizing nanofibers with carbohydrate blood group antigens. Biopolymers 105(11):787–794CrossRefPubMedGoogle Scholar
  28. 28.
    Blake D, Bovin N, Bess D, Henry SM (2011) FSL constructs: a simple method for modifying cell/virion surfaces with a range of biological markers without affecting their viability. J Vis Exp (54):1–9Google Scholar
  29. 29.
    Williams E et al (2016) Ultra-fast glyco-coating of non-biological surfaces. Int J Mol Sci 17(1):E118CrossRefPubMedGoogle Scholar
  30. 30.
    Ge J, Choi N (2017) Fabrication of functional polyurethane/rare earth nanocomposite membranes by electrospinning and its VOCs absorption capacity from air. Nanomaterials 7:60CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Celebioglu A et al (2016) Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere 144:736–744CrossRefPubMedGoogle Scholar
  32. 32.
    Srivastava A, Mazumdar D (2011) Monitoring and reporting VOCs in ambient air. In: Mazzeo NA (ed) Air quality monitoring, assessment and managementGoogle Scholar
  33. 33.
    Boucher O et al (2009) The indirect global warming potential and global temperature change potential due to methane oxidation. Environ Res Lett 4:044007CrossRefGoogle Scholar
  34. 34.
    Rani B et al (2011) Photochemical smog pollution and its mitigation measures. J Adv Sci Res 2:28–33Google Scholar
  35. 35.
    Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754CrossRefPubMedGoogle Scholar
  36. 36.
    Chen P et al (2011) Carbonaceous nanofiber membrane functionalized by beta-cyclodextrins for molecular filtration. ACS Nano 5:5928–5935CrossRefPubMedGoogle Scholar
  37. 37.
    Kayaci F, Uyar T (2014) Electrospun polyester/cyclodextrin nanofibers for entrapment of volatile organic compounds. Polym Eng Sci 54:2970–2978CrossRefGoogle Scholar
  38. 38.
    Uyar T et al (2010) Cyclodextrin functionalized poly(methyl methacrylate ) (PMMA) electrospun nanofibers for organic vapors waste treatment. J Membr Sci 365:409–417CrossRefGoogle Scholar
  39. 39.
    Celebioglu A, Uyar T (2011) Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. Langmuir 27:6218–6226CrossRefPubMedGoogle Scholar
  40. 40.
    Uyar T et al (2010) Cyclodextrins: comparison of molecular filter performance. ACS Nano 4:5121–5130CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang Y et al (2016) Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J Am Chem Soc 138(18):5785–5788CrossRefPubMedGoogle Scholar
  42. 42.
    Qian J et al (2017) A microporous MOF with open metal sites and Lewis basic sites for selective CO2 capture. Dalton Trans 46(41):14102–14106CrossRefPubMedGoogle Scholar
  43. 43.
    Vellingiri K et al (2016) Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions. Sci Rep 6:27813CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Luo X et al (2017) Selective removal Pb(ii) ions form wastewater using Pb(ii) ion-imprinted polymers with bi-component polymer brushes. RSC Adv 7(42):25811–25820CrossRefGoogle Scholar
  45. 45.
    Blasi B et al (2016) Pathogenic yet environmentally friendly? Black fungal candidates for bioremediation of pollutants. Geomicrobiol J 33(3–4):308–317CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Biswas B et al (2015) Bioremediation of PAHs and VOCs: advances in clay mineral–microbial interaction. Environ Int 85(Supplement C):168–181CrossRefPubMedGoogle Scholar
  47. 47.
    Modesti M, Boaretti C (2016) Encyclopedia of membranes, p 1–3Google Scholar
  48. 48.
    World Health Organization (2012) Global Health Observatory Data. Retrieved March 22, 2018, from
  49. 49.
    World Health Organization (2006) Meeting the MDG drinking water and sanitation target : the urban and rural challenge of the decade. GenevaGoogle Scholar
  50. 50.
    Nasreen SAAN et al (2013) Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membranes 3:266–284CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Water Purifier Market (Technology – Gravity Purifiers, RO Purifiers, UV Purifiers, Sediment Filters, and Water Softener; End-User – Industrial, Commercial, and Household; Accessories – Pitcher Filter, Under Sink Filter, Shower Filter, Faucet Mount, Water Dispenser, Replacement Filter, Countertop Filters, and Whole House Filters) – Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2017–2025 (2017) In: Technology & Media, USAGoogle Scholar
  52. 52.
    Doǧan M, Özdemir Y, Alkan M (2007) Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pigments 75:701–713CrossRefGoogle Scholar
  53. 53.
    Pan Y et al (2016) Fabrication of highly hydrophobic organic-inorganic hybrid magnetic polysulfone microcapsules: a lab-scale feasibility study for removal of oil and organic dyes from environmental aqueous samples. J Hazard Mater 309:65–76CrossRefPubMedGoogle Scholar
  54. 54.
    Kandisa RV, Narayana Saibaba KV (2016) Dye removal by adsorption: a review. J Bioremed Biodegr 07:317CrossRefGoogle Scholar
  55. 55.
    Gürses A et al (2016) Dyes and pigments. In: Dyes and pigmentsGoogle Scholar
  56. 56.
    Gopal R et al (2007) Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal. J Membr Sci 289:210–219CrossRefGoogle Scholar
  57. 57.
    Ma Z, Masaya K, Ramakrishna S (2006) Immobilization of Cibacron blue F3GA on electrospun polysulphone ultra-fine fiber surfaces towards developing an affinity membrane for albumin adsorption. J Membr Sci 282:237–244CrossRefGoogle Scholar
  58. 58.
    Hou C et al (2015) Preparation of PAN/PAMAM blend nanofiber mats as efficient adsorbent for dye removal. Fibers Polym 16:1917–1924CrossRefGoogle Scholar
  59. 59.
    Qureshi UA et al (2017) Highly efficient and robust electrospun nanofibers for selective removal of acid dye. J Mol Liq 244:478–488CrossRefGoogle Scholar
  60. 60.
    Mahmoodi NM, Mokhtari-Shourijeh Z, Ghane-Karade A (2017) Synthesis of the modified nanofiber as a nanoadsorbent and its dye removal ability from water: Isotherm, kinetic and thermodynamic. Water Sci Technol 75:2475–2487CrossRefPubMedGoogle Scholar
  61. 61.
    Qureshi UA et al (2017) Electrospun zein nanofiber as a green and recyclable adsorbent for the removal of reactive black 5 from the aqueous phase. ACS Sustain Chem Eng 5:4340–4351CrossRefGoogle Scholar
  62. 62.
    Stenstad P et al (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45CrossRefGoogle Scholar
  63. 63.
    Johnson R (2010) TEMPO-oxidized nanocelluloses: Surface modification and use as additives in cellulosic nanocomposites. Esf EduGoogle Scholar
  64. 64.
    Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: A review. Materials 6:1745–1766CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gopakumar DA et al (2017) Meldrum’s acid modified cellulose nanofiber-based polyvinylidene fluoride microfiltration membrane for dye water treatment and nanoparticle removal. ACS Sustain Chem Eng 5:2026–2033CrossRefGoogle Scholar
  66. 66.
    Aziz S et al (2017) Electrospun silk fibroin/PAN double-layer nanofibrous membranes containing polyaniline/TiO2 nanoparticles for anionic dye removal. J Polym Res 24:140CrossRefGoogle Scholar
  67. 67.
    Tahaei P et al (2008) Preparation of chelating fibrous polymer by different diamines and study on their physical and chemical properties. Mater Werkst 39:839–844CrossRefGoogle Scholar
  68. 68.
    Liu Z-G et al (2017) Efficient removal of organic dyes from water by β-cyclodextrin functionalized graphite carbon nitride composite. ChemistrySelect 2(5):1753–1758CrossRefGoogle Scholar
  69. 69.
    Jaishankar M et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Tchounwou PB et al (2012) Heavy metals toxicity and the environment. EXS 101:1–30Google Scholar
  71. 71.
    Bolisetty S, Mezzenga R (2016) Amyloid–carbon hybrid membranes for universal water purification. Nat Nano 11(4):365–371CrossRefGoogle Scholar
  72. 72.
    Shen X, Xu C, Ye L (2013) Molecularly imprinted polymers for clean water: analysis and purification. Ind Eng Chem Res 52(39):13890–13899CrossRefGoogle Scholar
  73. 73.
    Vasapollo G et al (2011) Molecularly imprinted polymers: present and future prospective. Int J Mol Sci 12(9):5908–5945CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Pan G et al (2011) Controlled synthesis of water-compatible molecularly imprinted polymer microspheres with ultrathin hydrophilic polymer shells via surface-initiated reversible addition-fragmentation chain transfer polymerization. Soft Matter 7(18):8428–8439CrossRefGoogle Scholar
  75. 75.
    Mafu LD, Mamba BB, Msagati TAM (2016) Synthesis and characterization of ion imprinted polymeric adsorbents for the selective recognition and removal of arsenic and selenium in wastewater samples. J Saudi Chem Soc 20(5):594–605CrossRefGoogle Scholar
  76. 76.
    Mohamed A et al (2017) Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers. J Colloid Interface Sci 505:682–691CrossRefPubMedGoogle Scholar
  77. 77.
    Guo X et al (2011) High-performance and reproducible polyaniline nanowire/tubes for removal of Cr(VI) in aqueous solution. J Phys Chem C 115:1608–1613CrossRefGoogle Scholar
  78. 78.
    Ku Y, Jung IL (2001) Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res 35:135–142CrossRefPubMedGoogle Scholar
  79. 79.
    Mohamed A et al (2017) Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions. Chemosphere 180:108–116CrossRefPubMedGoogle Scholar
  80. 80.
    Kumar R, Barakat MA, Alseroury FA (2017) Oxidized g-C3N4/polyaniline nanofiber composite for the selective removal of hexavalent chromium. Sci Rep 7:12850CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Almasian A et al (2016) Surface modification of electrospun PAN nanofibers by amine compounds for adsorption of anionic dyes. Desalin Water Treat 57:10333–10348CrossRefGoogle Scholar
  82. 82.
    Almasian A et al (2016) Zwitter ionic modification of cobalt-ferrite nanofiber for the removal of anionic and cationic dyes. J Taiwan Inst Chem Eng 67:306–317CrossRefGoogle Scholar
  83. 83.
    Kampalanonwat P, Supaphol P (2010) Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Appl Mater Interfaces 2:3619–3627CrossRefPubMedGoogle Scholar
  84. 84.
    Chitpong N, Husson SM (2016) Nanofiber ion-exchange membranes for the rapid uptake and recovery of heavy metals from water. Membranes 6:59CrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sehaqui H et al (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844CrossRefGoogle Scholar
  86. 86.
    Vilasrao TD (2017) Bacterial contamination in drinking water: assesing the potabilty of water. Int Edu Appl Sci Res J (IEASRJ) 2Google Scholar
  87. 87.
    Cabral JPS (2010) Water microbiology. Bacterial pathogens and water. Int J Environ Res Public Health 7:3657–3703CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    EPA (2017) Drinking water contaminant candidate list (CCL) and regulatory determinationGoogle Scholar
  89. 89.
    van den Hurk R, Evoy S (2015) A review of membrane-based biosensors for pathogen detection. Sensors (Switzerland) 15:14045–14078CrossRefGoogle Scholar
  90. 90.
    Gao Y et al (2014) Electrospun antibacterial nanofibers: production, activity, and in vivo applications. J Appl Polym Sci 131:9041–9053CrossRefGoogle Scholar
  91. 91.
    De Faria AF et al (2015) Antimicrobial electrospun biopolymer nanofiber mats functionalized with graphene oxide-silver nanocomposites. ACS Appl Mater Interfaces 7:12751–12759CrossRefPubMedGoogle Scholar
  92. 92.
    Dubey P et al (2015) Silver-nanoparticle-Incorporated composite nanofibers for potential wound-dressing applications. J Appl Polym Sci 132:1–12CrossRefGoogle Scholar
  93. 93.
    Nthunya LN et al (2017) Greener approach to prepare electrospun antibacterial β-cyclodextrin/cellulose acetate nanofibers for removal of bacteria from water. ACS Sustain Chem Eng 5:153–160CrossRefGoogle Scholar
  94. 94.
    Cheirsilp B, Rakmai J (2017) Inclusion complex formation of cyclodextrin with its guest and their applications. Biol Eng Med 2:1–6CrossRefGoogle Scholar
  95. 95.
    Yu Z et al (2015) Preparation of a novel anti-fouling β-cyclodextrin–PVDF membrane. RSC Adv 5:51364–51370CrossRefGoogle Scholar
  96. 96.
    Qin X-H, Wang S-Y (2008) Electrospun nanofibers from crosslinked poly(vinyl alcohol) and its filtration efficiency. J Appl Polym Sci 109(2):951–956CrossRefGoogle Scholar
  97. 97.
    Yun KM et al (2010) Morphology optimization of polymer nanofiber for applications in aerosol particle filtration. Sep Purif Technol 75(3):340–345CrossRefGoogle Scholar
  98. 98.
    Cooper A et al (2013) Chitosan-based nanofibrous membranes for antibacterial filter applications. Carbohydr Polym 92(1):254–259CrossRefPubMedGoogle Scholar
  99. 99.
    Han W, Gaofeng Z, DaoHeng S (2007) Electrospun nanofibrous membrane for air filtration. In: 2007 7th IEEE conference on nanotechnology (IEEE NANO)Google Scholar
  100. 100.
    Gibson HS (2007) Patterned electrospray fiber structures. In: Busnaina A (ed) Nanomanufacturing handbook. CRC Press, Boca RatonGoogle Scholar
  101. 101.
    Matulevicius J et al (2016) The comparative study of aerosol filtration by electrospun polyamide, polyvinyl acetate, polyacrylonitrile and cellulose acetate nanofiber media. J Aerosol Sci 92(Supplement C):27–37CrossRefGoogle Scholar
  102. 102.
    Homaeigohar SS, Buhr K, Ebert K (2010) Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. J Membr Sci 365(1):68–77CrossRefGoogle Scholar
  103. 103.
    Saeed K et al (2008) Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J Membr Sci 322(2):400–405CrossRefGoogle Scholar
  104. 104.
    Zhou Z (2016) Electrospinning ultrathin continuous cellulose acetate fibers for high-flux water filtration. Colloids Surf A Physicochem Eng Asp 494:21–29CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ankita Poudyal
    • 1
  • Gareth W. Beckermann
    • 2
  • Naveen Ashok Chand
    • 2
  • Iain C. Hosie
    • 2
  • Adam Blake
    • 2
  • Bhuvaneswari Kannan
    • 2
    Email author
  1. 1.Kode Biotech, Auckland University of TechnologyAucklandNew Zealand
  2. 2.Revolution Fibres LtdAucklandNew Zealand

Personalised recommendations