Affinity Membranes for Capture of Cells and Biological Substances

  • Rameshkumar Saranya
  • Rajendiran Murugan
  • Manasa Hegde
  • James Doyle
  • Ramesh BabuEmail author


Fundamental approaches of developing electrospun affinity membranes and their applications in cell capture and separation of biologically active substances are discussed. Basic principles of affinity membrane-based separation process and types of various surface modifications are described, to produce electrospun affinity nanofibers for filtration or fractionation of desired biological substances. The relevant advancements in electrospinning for novel surface modifications have been discussed with a special focus on coupled ligands and molecular imprinted polymers. Applications pertaining to cell capturing and filtration of biomolecules are reviewed in detail, with reference to recent reports on electrospun affinity nanofiber membranes for various antibody and protein purification.


Affinity membranes Electrospinning Ligands Nanomaterials Nanofibers Immobilization Biomolecule Filtration Cell capture 


  1. 1.
    Klein E (2000) Affinity membranes: a 10-year review. J Membr Sci 179:1–27CrossRefGoogle Scholar
  2. 2.
    Thommes J, Kula MR (1995) Membrane chromatography-an integrative concept in the downstream processing of proteins. Biotechnol Prog 11:357–367CrossRefGoogle Scholar
  3. 3.
    Ma Z, Kotaki M, Ramakrishna S (2006) Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: a novel affinity membrane. J Membr Sci 272:179–187CrossRefGoogle Scholar
  4. 4.
    Ma Z, Masaya K, Ramakrishna S (2006) Immobilization of Cibacron blue F3GA on electrospun polysulphone ultra-fine fiber surfaces towards developing an affinity membrane for albumin adsorption. J Membr Sci 282:237–244CrossRefGoogle Scholar
  5. 5.
    Gao H, Sun X, Gao C (2017) Antifouling polysulfone ultrafiltration membranes with sulfobetaine polyimides as novel additive for the enhancement of both water flux and protein rejection. J Membr Sci 542:81–90CrossRefGoogle Scholar
  6. 6.
    Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu (II) and Pb (II) ions from an aqueous solution. J Membr Sci 328:90–96CrossRefGoogle Scholar
  7. 7.
    Zhang H, Nie H, Li S et al (2008) Electrospun nylon nanofiber as affinity membrane for papain adsorption. J Biotech 136:S416CrossRefGoogle Scholar
  8. 8.
    Ma Z, Mao Z, Gao C (2007) Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B 60:137–157CrossRefPubMedGoogle Scholar
  9. 9.
    Karim Z, Mathew AP, Kokol V et al (2016) High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Adv 6:20644–20653CrossRefGoogle Scholar
  10. 10.
    Zhang H, Jia X, Han F et al (2013) Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials 34:2202–2212CrossRefPubMedGoogle Scholar
  11. 11.
    Web of Sciences (2017) Accessed 06 Dec 2017
  12. 12.
    Ramakrishna S, Fujihara K, Teo WE et al (2005) An introduction to electrospinning and nanofibers chapter 2. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  13. 13.
    Nasreen SAAN, Sundarrajan S, Nizar SAA et al (2013) Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membranes 3(4):266–284CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Alam H, Ramakrishna S (2012) A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2:190–212CrossRefGoogle Scholar
  15. 15.
    Raghavan P et al (2012) Electrospun polymer nanofibers: the booming cutting edge technology. React Funct Polym 72(12):915–930CrossRefGoogle Scholar
  16. 16.
    Shin SH, Purevdorj O, Planell JA et al (2012) A short review: recent advances in electrospinning for bone tissue regeneration. J Tissue Eng 3(1):2041731412443530. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Teo WE, Inai R, Ramakrishna S (2011) Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater 12(1):013002CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang X, Hsiao BS (2016) Electrospun nanofiber membranes. Curr Opin Chem Eng 12:62–81CrossRefGoogle Scholar
  19. 19.
    Zhu T, Xu D, Wu Y et al (2013) Surface molecularly imprinted electrospun affinity membranes with multimodal pore structures for efficient separation of proteins. J Mater Chem B 1:6449–6458CrossRefGoogle Scholar
  20. 20.
    Nada AA, James R, Shelke NB et al (2014) A smart methodology to fabricate electrospun chitosan nanofiber matrices for regenerative engineering applications. Polym Adv Technol 25:507–515CrossRefGoogle Scholar
  21. 21.
    Son YJ, Kang J, Kim HS et al (2016) Electrospun nanofibrous sheets for selective cell capturing in continuous flow in microchannels. Biomacromolecules 17:1067–1074CrossRefPubMedGoogle Scholar
  22. 22.
    Wang X, Um IC, Fang D et al (2005) Formation of water-resistant hyaluronic acid nanofibers by blowing-assisted electro-spinning and non-toxic post treatments. Polymer 4:4853–4867CrossRefGoogle Scholar
  23. 23.
    Hu X, Liu S, Zhou G (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21CrossRefPubMedGoogle Scholar
  24. 24.
    Chakraborty S, Liao IC, Adler A et al (2009) Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev 61:1043–1054CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Guex AG, Hegemann D, Giraud MN et al (2014) Covalent immobilisation of VEGF on plasma-coated electrospun scaffolds for tissue engineering applications. Colloids Surf B Biointerfaces 123:724–733CrossRefPubMedGoogle Scholar
  26. 26.
    Tonglairoum P, Ngawhirunpat T, Rojanarata T et al (2015) Fabrication of a novel scaffold of clotrimazole-microemulsioncontaining nanofibers using an electrospinning process for oral candidiasis applications. Colloids Surf B Biointerfaces 126:18–25CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang M, Wang Z, Wang Z et al (2011) Immobilization of anti-CD31 antibody on electrospun poly(e-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells. Colloids Surf B Biointerfaces 85:32–39CrossRefPubMedGoogle Scholar
  28. 28.
    Chen Z, Chen Z, Zhang A et al (2016) Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci 4:922–932CrossRefPubMedGoogle Scholar
  29. 29.
    Chung HY, John RB, Gogins MA et al (2008) Use of crosslinked polyvinyl alcohol in polymers with improved environmental stability. EP1925352A1, 3–15Google Scholar
  30. 30.
    Ebara M, Kotsuchibashi Y, Uto K et al (2014) Smart hydrogels In: Smart biomaterials, pp 1–373Google Scholar
  31. 31.
    Shabafrooz V, Mozafari M, Vashaee D et al (2014) Electrospun nanofibers: from filtration membranes to highly specialized tissue engineering scaffolds. J Nanosci Nanotechnol 14:522–534CrossRefPubMedGoogle Scholar
  32. 32.
    Li H, Li C, Zhang C et al (2014) Well dispersed copper nanorods grown on the surface functionalized PAN fibers and its antibacterial activity. J Appl Polym Sci 131:41011Google Scholar
  33. 33.
    Li X, Wang C, Yang Y (2014) Dual-biomimetic superhydrophobic electrospun polystyrene nanofibrous membranes for membrane distillation. ACS Appl Mater Interfaces 6:2423–2430CrossRefPubMedGoogle Scholar
  34. 34.
    Yang Z, Si J, Cui Z et al (2017) Biomimetic composite scaffolds based on surface modification of polydopamine on electrospun poly(lactic acid)/cellulose nanofibrils. Carbohydr Polym 174(15):750–759CrossRefPubMedGoogle Scholar
  35. 35.
    Ma Z, Kotaki M, Yong T, He W, Ramakrishna S (2005a) Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26(15):2527–2536CrossRefPubMedGoogle Scholar
  36. 36.
    Ma Z, Kotaki M, Ramakrishna S (2005b) Electrospun cellulose nanofiber as affinity membrane. J Membr Sci 265:115–123CrossRefGoogle Scholar
  37. 37.
    Yoshikawa M, Ooi T, Izumi J (1999) Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate. J Appl Polym Sci 72:493–499CrossRefGoogle Scholar
  38. 38.
    Zhang H, Nie H, Yu D et al (2010) Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for bromelain adsorption. Desalination 256:141–147CrossRefGoogle Scholar
  39. 39.
    Zhang H, Wu C, Zhang Y et al (2010) Elaboration, characterization and study of a novel affinity membrane made from electrospun hybrid chitosan/nylon-6 nanofibers for papain purification. J Mater Sci 45:2296–2304CrossRefGoogle Scholar
  40. 40.
    Reddy PS, Kobayashi T, Fujii N (2002) Recognition characteristics of dibenzofuran by molecularly imprinted polymers made of common polymers. Eur Polym J 38:779–785CrossRefGoogle Scholar
  41. 41.
    Shi W, Zhang F, Zhang G et al (2010) Polylysine-immobilized affinity nylon membrane used for bilirubin adsorption. Mol Simul 29:787–790CrossRefGoogle Scholar
  42. 42.
    Trotta F, Drioli E, Baggiani C, Lacopo D (2002) Molecularly imprinted polymeric membranefor naringin recognition. J Membr Sci 201:77–84CrossRefGoogle Scholar
  43. 43.
    Ulbricht M, Malaisamy R (2005) Insights into the mechanism of molecular imprinting by immersion precipitation phase inversion of polymer blends via a detailed morphology analysis of porous membranes. J Mater Chem 15:1487–1497CrossRefGoogle Scholar
  44. 44.
    Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262CrossRefGoogle Scholar
  45. 45.
    Avramescu MME, Wessling M, Borneman Z (2015) In: Pabby AK, Rizvi SSH, Requena AMS (eds) Membrane and monolithic convective chromatographic supports, 2nd edn. Taylor & Francis Group, Burlington, p 42Google Scholar
  46. 46.
    Hage DS, Cazes J (eds) (2006) Handbook of affinity chromatography, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  47. 47.
    Fleschin S, Bunaciu AA, Scripcariu M (2004) Preferable methods for immobilized biocatalysts in enzyme electrode construction. Rom Biotechnol Lett 9:1947–1958Google Scholar
  48. 48.
    Suen SY, Lin SY, Chiu HS (2000) Effects of spacer arms on Cibacron blue 3GA immobilization and lysozyme adsorption using regenerated cellulose membrane discs. Ind Eng Chem Res 39:478–487CrossRefGoogle Scholar
  49. 49.
    Acikara OB, Citoglu GS, Ozbilgin S, Ergene B (2013) Affinity chromatography and importance in drug discovery. In Tech open access. doi: CrossRefGoogle Scholar
  50. 50.
    Ayyar BV, Arora S, Murphy C, O’Kennedy R (2012) Affinity chromatography as a tool for antibody purification. Methods 56:116–129CrossRefPubMedGoogle Scholar
  51. 51.
    Zou H, Luo Q, Zhou D (2001) Affinity membrane chromatography for the analysis and purification of proteins. J Biochem Biophys Methods 49:199–240CrossRefPubMedGoogle Scholar
  52. 52.
    Quiros J, Boltes K, Rosal R (2016) Bioactive applications for electrospun fibers. Polym Rev 56(4):631–667CrossRefGoogle Scholar
  53. 53.
    Chakrabarty T, Kumar M, Rajesh KP et al (2010) Nanofibrous sulfonated poly (ether ether ketone) membrane for selective electro-transport of ions. Sep Purif Technol 75:174–182CrossRefGoogle Scholar
  54. 54.
    Wang J, Kang Q, Lv X et al (2013) Simple patterned Nanofiber scaffolds and its enhanced performance in immunoassay. PLoS One 8(12):82–88CrossRefGoogle Scholar
  55. 55.
    Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J, Fabis R, Labahn J, Schafer F (2009) Immobilized-metal affinity chromatography (IMAC): a review, methods in enzymology, vol 463. Elsevier, Amsterdam, pp 439–473Google Scholar
  56. 56.
    De Aquino LC, De Sousa HR, Miranda EA, Vilela L, Bueno SM (2006) Evaluation of IDA-PEVA hollow fiber membrane metal ion affinity chromatography for purification of a histidine-tagged human proinsulin. J Chromatogr B Analyt Technol Biomed Life Sci 834(1–2):68–76CrossRefPubMedGoogle Scholar
  57. 57.
    Serpa G, Augusto EFP, Tamashiro WMSC, Ribeiro MB, Miranda EA, Bueno SMA (2005) Evaluation of immobilized metal membrane affinity chromatography for purification of an immunoglobulin G1 monoclonal antibody. J Chromatogr B 816:259–268CrossRefGoogle Scholar
  58. 58.
    Taguchi H, Sunayama H, Takano E, Kitayama Y, Takeuchi T (2015) Preparation of molecularly imprinted polymers for the recognition of proteins via the generation of peptide-fragment binding sites by semicovalent imprinting and enzymatic digestion. Analyst 140:1448–1452CrossRefPubMedGoogle Scholar
  59. 59.
    Boi C, Castro C, Sarti GC (2015) Plasminogen purification from serum through affinity membranes. J Membr Sci 475:71–79CrossRefGoogle Scholar
  60. 60.
    Shi W, Zhanga F, Zhanga G (2005) Adsorption of bilirubin with polylysine carrying chitosan-coated nylon affinity membranes. J Chromatogr B 819:301–306CrossRefGoogle Scholar
  61. 61.
    Wang W, Zhang H, Zhang Z et al (2017) Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin. Colloids Surf B 150:271–278CrossRefGoogle Scholar
  62. 62.
    Honjo T, Hoe K, Tabayashi S et al (2013) Preparation of affinity membranes using thermally induced phase separation for one-step purification of recombinant proteins. Anal Biochem 434:269–274CrossRefPubMedGoogle Scholar
  63. 63.
    Beeskow TC, Kusharyoto W, Anspach FB et al (1995) Surface modification of microporous polyamide membranes with hydroxyethyl cellulose and their application as affinity membranes. J Chromatogr A 715:49–65CrossRefGoogle Scholar
  64. 64.
    Klein E, Eichholz E, Yeager DH (1994) Affinity membranes prepared from hydrophilic coatings on microporous polysulfone hollow fibers. J Membr Sci 90:69–80CrossRefGoogle Scholar
  65. 65.
    Kim M, Saito K, Furusaki S et al (1991) Adsorption and elution of bovine γ-globulin using an affinity membrane containing hydrophobic amino acids as ligands. J Chromatogr A 585:45–51CrossRefGoogle Scholar
  66. 66.
    Castilho LR, Deckwer WD, Anspach FB (2000) Influence of matrix activation and polymer coating on the purification of human IgG with protein A affinity membranes. J Membr Sci 172:269–277CrossRefGoogle Scholar
  67. 67.
    Tokonami S, Shiigi H, Nagaoka T (2009) Review: micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications. Anal Chim Acta 641:7–13CrossRefPubMedGoogle Scholar
  68. 68.
    Bompart M, Haupt K, Ayela C (2012) Micro and nanofabrication of molecularly imprinted polymers. Top Curr Chem 325:83–110Google Scholar
  69. 69.
    Lee Y, Lee JH, Son KJ, Koh WG (2011) Fabrication of hydrogel-micropatterned nanofibers for highly sensitive microarray-based immunosensors having additional enzyme-based sensing capability. J Mater Chem 21:4476–4483CrossRefGoogle Scholar
  70. 70.
    Liu Y, Yang D, Yu T, Jiang X (2009) Incorporation of electrospun nanofibrous PVDF membranes into a microfluidic chip assembled by PDMS and scotch tape for immunoassays. Electrophoresis 30:3269–3275CrossRefPubMedGoogle Scholar
  71. 71.
    Yang D, Niu X, Liu Y, Wang Y, Gu X, Song L, Zhao R, Ma L, Shao Y, Jiang X (2008) Electrospun nanofibrous membranes: a novel solidsubstrate for microfluidic immunoassays for HIV. Adv Mater 20:4770–4775CrossRefGoogle Scholar
  72. 72.
    Senecal KJ, Senecal AG, Pivarnik PE, Mello CM, Soares JW, Schreuder-Gibson HL (2010) Electrospun nanofibrous membrane assembly for use in capturing chemical and/or biological analytes, US Patent, US20100240121 A1, 1–7Google Scholar
  73. 73.
    Zha Z, Cohn C, Dai Z et al (2011) Nanofibrous lipid membranes capable of functionally immobilizing antibodies and capturing specific cells. Adv Mater 23:3435–3440CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Adachi T, Mogi M, Harada M, Kojima K (1996) Selective removal of human serum amyloid P component from rat blood by use of an immunoaffinity membrane in an extracorporeal circulation system. J Chromatogr B Biomed Appl 682(1):47–54CrossRefPubMedGoogle Scholar
  75. 75.
    Bereli N, Yavuz H, Denizli A (2015) Immunoaffinity membranes. In: Drioli E, Giorno L (eds) Living reference work entry encyclopedia of membranes. Springer, Berlin, pp 1–2Google Scholar
  76. 76.
    Haupt K, Bueno SMA (2009) In: Wilson ID, Adlard ER, Cooke M, Poole CF (eds) Affinity membranes, handbook of methods and instrumentation in separation science. Academic Press, San DiegoGoogle Scholar
  77. 77.
    Xu G, Tan Y, Xu T et al (2017) Hyaluronic acid-functionalized electrospun PLGA nanofibers embedded in a microfluidic chip for cancer cell capture and culture. Biomater Sci 5:752–761CrossRefPubMedGoogle Scholar
  78. 78.
    Bell CL, Peppas NA (1995) Biomedical membranes from hydrogels and interpolymer complexes. Adv Polym Sci 22:125–176CrossRefGoogle Scholar
  79. 79.
    Mondal S, Li C, Wang K (2015) Bovine serum albumin adsorption on Glutaraldehyde cross-linked chitosan hydrogels. J Chem Eng Data 60:2356–2362CrossRefGoogle Scholar
  80. 80.
    Luong JHT, Nguyen AL (1992) In: Tsao GT (ed) Bioseparation, vol 47. Springer, Berlin, pp 137–158CrossRefGoogle Scholar
  81. 81.
    Tong U, Xu X, Wang H et al (2015) Solution-blown core–shell hydrogel nano fibers forbovine serum albumin affinity adsorption. RSC Adv 5:83232CrossRefGoogle Scholar
  82. 82.
    Cronje L, Klumperman B (2013) Modified electrospun polymer nanofibers as affinity membranes: the effect of pre-spinning modification versus post-spinning modification. Eur Polym J 49:3814–3824CrossRefGoogle Scholar
  83. 83.
    Lan T, Shao Z, Gu M et al (2015) Electrospun nanofibrous cellulose diacetate nitrate membrane for protein separation. J Membr Sci 489:204–2011CrossRefGoogle Scholar
  84. 84.
    Bamford CH, Al-Lamee KG, Purbrick MD, Wear TJ (1992) Studies of a novel membrane for affinity separations: functionalisation and protein coupling. J Chromatogr A 606:19–31CrossRefGoogle Scholar
  85. 85.
    Ma Z, Lan Z, Matsuura T et al (2009) Electrospun polyethersulfone affinity membrane: membrane preparation and performance evaluation. J Chromatogr B 877:3686–3694CrossRefGoogle Scholar
  86. 86.
    Ma K, Chan CK, Liao S et al (2008) Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells. Biomaterials 29:2096–2103CrossRefPubMedGoogle Scholar
  87. 87.
    Zhang HT, Han J, Xue Y et al (2009) Surface modification of electrospun nylon nanofiber based dye affinity membrane and its application to papain adsorption. Bioinform Biomed Eng. In: 3rd International conference on bioinformatics and Biomedical engineering, 11–13 June 2009Google Scholar
  88. 88.
    Yuan Z, Zhao X, Wang X et al (2014) Promotion of initial anti-tumor effect via polydopamine modified doxorubicin-loaded electrospun fibrous membranes. Int J Clin Exp Pathol 7(9):5436–5449PubMedPubMedCentralGoogle Scholar
  89. 89.
    Xiaomin H, Wei F, Bei F et al (2013) Electrospun collagen/Poly(L-lactic acid-co-ε-caprolactone) hybrid Nanofibrous membranes combining with sandwich construction model for cartilage tissue engineering. J Nanosci Nanotechnol 13:3818–3825CrossRefGoogle Scholar
  90. 90.
    Esfahani H, Prabhakaran MP, Salahi E et al (2016) Electrospun nylon 6/zinc doped hydroxyapatite membrane for protein separation: mechanism of fouling and blocking model. Mater Sci Eng C 59:420–428CrossRefGoogle Scholar
  91. 91.
    Ma H, Hsiao BS, Chu B (2014) Functionalized electrospun nanofibrous microfiltration membranes for removal of bacteria and viruses. J Membr Sci 452:446–452CrossRefGoogle Scholar
  92. 92.
    Esfahani H, Prabhakaran MP, Salahi E et al (2015) Protein adsorption on electrospun zinc doped hydroxyapatite containing nylon 6 membrane: kinetics and isotherm. J Colloid Interface Sci 443:143–152CrossRefPubMedGoogle Scholar
  93. 93.
    Che AF, Huang XJ, Xu ZK (2011) Polyacrylonitrile-based nanofibrous membrane with glycosylated surface for lectin affinity adsorption. J Membr Sci 366:272–277CrossRefGoogle Scholar
  94. 94.
    Moreno-Cortez IE, Romero-García J, González-González V et al (2015) Encapsulation and immobilization of papain in electrospun nanofibrous membranes of PVA cross-linked with glutaraldehyde vapor. Mater Sci Eng C 52:306–314CrossRefGoogle Scholar
  95. 95.
    Yang Q, Li JJ, Hu MX et al (2006) Nanofibrous sugar sticks via electrospinning. Macromol Rapid Comm 42:1942–1948CrossRefGoogle Scholar
  96. 96.
    Huang W, Wang Y et al (2016) Fabrication of flexible self-standing all-cellulose nanofibrous composite membranes for virus removal. Carbohydr Polym 143:9–17CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rameshkumar Saranya
    • 1
    • 2
  • Rajendiran Murugan
    • 3
    • 1
  • Manasa Hegde
    • 1
    • 2
  • James Doyle
    • 1
  • Ramesh Babu
    • 1
    • 2
    • 4
    Email author
  1. 1.AMBER, CRANN Institute, Trinity College DublinDublinRepublic of Ireland
  2. 2.School of Physics, Trinity College DublinDublinRepublic of Ireland
  3. 3.OEM Diagnostics, Merck LtdCounty CorkRepublic of Ireland
  4. 4.BEACON - Bioeconomy Research CentreUniversity College DublinDublinRepublic of Ireland

Personalised recommendations