Advertisement

Current Advances on Nanofiber Membranes for Water Purification Applications

  • Hongyang Ma
  • Benjamin S. Hsiao
Chapter

Abstract

Electrospun nanofiber membranes have many application potentials, including air/water filtration, gas storage, sensors/electronics, and healthcare/cosmetics. The recent advances of these membranes for water filtration applications, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis, forward osmosis, and membrane distillation, are reviewed here. The high porosity, adjustable pore size/pore size distribution, large range of materials choice, and available surface functionalization have provided the flexibility to tailor-design the membranes for numerous existing and emerging applications. Recent advances in electrospinning technology have further offered a variety of pathway for scale-up production of electrospun membranes, realizing its potential for water purification.

Keywords

Electrospun nanofibers Microfiltration Ultrafiltration Nanofiltration Reverse osmosis Forward osmosis Membrane distillation Water purification 

Notes

Acknowledgements

B.S.H. thanks the financial support by the SusChEM program of the National Science Foundation (DMR-1409507) and the Electric Power Research Institute. H.M. thanks the financial support by the National Natural Science Foundation of China (51673011), the State Key Laboratory of Organic-Inorganic Composites at Beijing University of Chemical Technology (oic-201503004) and the Fundamental Research Funds for the Central Universities (buctrc201501).

References

  1. 1.
    Ramakrishna S (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore, pp 1–382Google Scholar
  2. 2.
    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223–2253CrossRefGoogle Scholar
  3. 3.
    Lendlein A, Sisson A (2011) Handbook of biodegradable polymers: isolation, synthesis, characterization and applications. Wiley-VCH Verlag, Weinheim, pp 1–426CrossRefGoogle Scholar
  4. 4.
    Thavasi V, Singh G, Ramakrishna S (2008) Energy Environ Sci 1:205–221CrossRefGoogle Scholar
  5. 5.
    Fang D, Chang C, Hsiao BS, Chu B (2006) Development of multiple-jet electrospinning technology. In: Reneker DH, Fong H (eds) ACS symposium series, no. 918, Polymeric nanofibers, Chap. 7, pp 91–103Google Scholar
  6. 6.
    Burger C, Hsiao BS, Chu B (2006) Annu Rev Mater Res 36:333–368CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Chu B, Hsiao BS, Yoon K (2008) AATCC Rev 8:31–33Google Scholar
  9. 9.
    Jayaraman K, Kotaki M, Zhang YZ, Mo XM, Ramakrishna S (2004) J Nanosci Nanotechnol 4:52–65PubMedGoogle Scholar
  10. 10.
    Chase GG, Varabhas JS, Reneker DH (2011) J Eng Fiber Fabr 6:32–38Google Scholar
  11. 11.
    Ma HY, Chu B, Hsiao BS (2012) In: Wei Q (ed) (Chap. 15) Functional nanofibers and applications. Wood Publishing, London, pp 331–370CrossRefGoogle Scholar
  12. 12.
    Sill TJ, von Recum HA (2008) Biomaterials 29:1989–2006CrossRefPubMedGoogle Scholar
  13. 13.
    Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) J Biomed Mater Res B Appl Biomater 67:675–679CrossRefPubMedGoogle Scholar
  14. 14.
    Kumbar SG, Nair LS, Bhattacharyya S, Laurencin CT (2006) J Nanosci Nanotechnol 6:2591–2607CrossRefPubMedGoogle Scholar
  15. 15.
    Rieger KA, Birch NP, Schiffman JD (2013) J Mater Chem B 1:4531–4541CrossRefGoogle Scholar
  16. 16.
    Wang Z, Wan L, Liu Z, Huang X, Xu Z (2009) J Mol Catal B Enzym 56:189–195CrossRefGoogle Scholar
  17. 17.
    Ma ZW, Kotaki M, Inai R, Ramakrishna S (2005) Tissue Eng 11:101–109CrossRefPubMedGoogle Scholar
  18. 18.
    Prabhakaran MP, Venugopal J, Chan CK, Ramakrishna S (2008) Nanotechnology 19:455102CrossRefPubMedGoogle Scholar
  19. 19.
    Yang X, Wang H (2010) Electrospun functional nanofibrous scaffolds for tissue engineering. In: Eberli D (ed) Tissue engineering. InTech, Rijeka, pp 159–177Google Scholar
  20. 20.
    Jo SM (2012) In: Liu J (ed) Hydrogen storage. InTech, Shanghai, pp 181–210. Chap. 8Google Scholar
  21. 21.
    Miao J, Miyauchi M, Simmons TJ, Dordick JS, Linhardt RJ (2010) J Nanosci Nanotechnol 10:5507–5519CrossRefPubMedGoogle Scholar
  22. 22.
    Ding B, Wang M, Yu J, Sun G (2009) Sensors 9:1609–1624CrossRefPubMedGoogle Scholar
  23. 23.
    Ma HY, Burger C, Hsiao BS, Chu B (2011) J Mater Chem 21:7507–7510CrossRefGoogle Scholar
  24. 24.
    Ma HY, Hsiao BS, Chu B (2013) Curr Org Chem 17:1361–1370CrossRefGoogle Scholar
  25. 25.
    Chu B, Hsiao BS (2009) J Polym Sci B Polym Phys 47:2431–2435CrossRefGoogle Scholar
  26. 26.
    Yoon K, Hsiao BS, Chu B (2008) J Mater Chem 18:5326–5334CrossRefGoogle Scholar
  27. 27.
    Agarwal S, Wendorff JH, Greiner A (2010) Macromol Rapid Commun 31:1317–1331CrossRefPubMedGoogle Scholar
  28. 28.
    Strutt JW (Lord Rayleigh) (1879) Proc R Soc Lond 28:404–409Google Scholar
  29. 29.
    Zeleny J (1914) Phys Rev 3:69–91CrossRefGoogle Scholar
  30. 30.
    Cooley JF (1902) Apparatus for electrically dispersing fluids. U.S. Patent 692,631Google Scholar
  31. 31.
    Morton WJ (1902) Method of dispersing fluids. U.S. Patent 705,691Google Scholar
  32. 32.
    Formhals A (1934) Process and apparatus for preparing artificial threads. U.S. Patent 1,975,504Google Scholar
  33. 33.
    Norton CL (1936) Method and apparatus for producing fibrous or filamentary material. U.S. Patent 2,048,651Google Scholar
  34. 34.
    Taylor G (1969) Proc R Soc Lond A 280:383–397CrossRefGoogle Scholar
  35. 35.
    Taylor G (1969) Proc R Soc Lond A 313:453–475CrossRefGoogle Scholar
  36. 36.
    Kumbar SG, Nukavarapu SP, James R, Hogan MV, Laurencin CT (2008) Recent Pat Biomed Eng 1:68–78CrossRefGoogle Scholar
  37. 37.
    Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Polymer 43:4403–4412CrossRefGoogle Scholar
  38. 38.
    Liu Y, Ma HY, Hsiao BS, Chu B, Tsou AH (2016) Polymer 107:163–169CrossRefGoogle Scholar
  39. 39.
    Liang D, Hsiao BS, Chu B (2007) Adv Drug Deliv Rev 59:1392–1412CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Homaeigohar S, Elbahri M (2014) Materials 7:1017–1045CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wang X, Hsiao BS (2016) Curr Opin Chem Eng 12:62–81CrossRefGoogle Scholar
  42. 42.
    Ma HY, Hsiao BS, Chu B (2014) J Membr Sci 452:446–452CrossRefGoogle Scholar
  43. 43.
    Wang R, Liu Y, Li B, Hsiao BS, Chu B (2012) J Membr Sci 392–393:167–174CrossRefGoogle Scholar
  44. 44.
    US Patent, 13/018 0917, 2013; WO Patent, 12/094 407, 2012Google Scholar
  45. 45.
    Ma HY, Burger C, Hsiao BS, Chu B (2012) Biomacromolecules 13:180–186CrossRefPubMedGoogle Scholar
  46. 46.
    Sato A, Wang R, Ma HY, Hsiao BS, Chu B (2011) J Electron Microsc 60:201–209CrossRefGoogle Scholar
  47. 47.
    Wang X, Chen X, Yoon K, Fang D, Hsiao BS, Chu B (2005) Environ Sci Technol 39:7684–7691CrossRefPubMedGoogle Scholar
  48. 48.
    Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B (2006) Polymer 47:2434–2441CrossRefGoogle Scholar
  49. 49.
    Ma HY, Burger C, Hsiao BS, Chu B (2011) Biomacromolecules 12:970–976CrossRefPubMedGoogle Scholar
  50. 50.
    Ma HY, Yoon K, Rong L, Mao Y, Mo Z, Fang D, Hollander Z, Gaiteri J, Hsiao BS, Chu B (2010) J Mater Chem 20:4692–4704CrossRefGoogle Scholar
  51. 51.
    Yoon K, Hsiao BS, Chu B (2009) J Membr Sci 338:145–152CrossRefGoogle Scholar
  52. 52.
    Ma HY, Hsiao BS, Chu B (2011) Polymer 52:2594–2599CrossRefGoogle Scholar
  53. 53.
    Ma HY, Hsiao BS, Chu B (2014) J Membr Sci 454:272–282CrossRefGoogle Scholar
  54. 54.
    Ma HY, Yoon K, Rong L, Shokralla M, Kopot A, Wang X, Fang D, Hsiao BS, Chu B (2010) Ind Eng Chem Res 49:11978–11984CrossRefGoogle Scholar
  55. 55.
    Wang Z, Ma HY, Hsiao BS, Chu B (2014) Polymer 55:366–372CrossRefGoogle Scholar
  56. 56.
    Yoon K, Hsiao BS, Chu B (2009) J Membr Sci 326:484–492CrossRefGoogle Scholar
  57. 57.
    Yung L, Ma HY, Wang X, Yoon K, Wang R, Hsiao BS, Chu B (2010) J Membr Sci 365:52–58CrossRefGoogle Scholar
  58. 58.
    Wang X, Yeh TM, Wang Z, Yang R, Wang R, Ma HY, Hsiao BS, Chu B (2014) Polymer 55:1358–1366CrossRefGoogle Scholar
  59. 59.
    Wang X, Ma HY, Chu B, Hsiao BS (2017) Desalination 420:91–98. AcceptedCrossRefGoogle Scholar
  60. 60.
    Bui N, Lind ML, Hoek EMV, McCutcheon JR (2011) J Membr Sci 385–386:10–19CrossRefGoogle Scholar
  61. 61.
    Lawson KW, Lloyd DR (1997) J Membr Sci 124:1–25CrossRefGoogle Scholar
  62. 62.
    Alkhudhiri A, Darwish N, Hilal N (2012) Desalination 287:2–18CrossRefGoogle Scholar
  63. 63.
    Li X, Wang C, Yang Y, Wang X, Zhu M, Hsiao BS (2014) ACS Appl Mater Interfaces 6:2423–2430CrossRefPubMedGoogle Scholar
  64. 64.
    Um IC, Fang D, Hsiao BS, Okamoto A, Chu B (2004) Biomacromolecules 5:1428–1436CrossRefPubMedGoogle Scholar
  65. 65.
    Chu B, Hsiao B.S, Fang D, Okamato A (2008) Crosslinking of hyaluronan solutions and nanofibrous membranes made therefrom. U.S. Patent 7,323,425Google Scholar
  66. 66.
    Wang X, Um IC, Fang D, Okamoto A, Hsiao BS, Chu B (2005) Polymer 46:4853–4867CrossRefGoogle Scholar
  67. 67.
    Kallioinen M, Pekkarinen M, Manttari M, Nuortila-Jokinen J, Nystrom M (2007) J Membr Sci 294:93–102CrossRefGoogle Scholar
  68. 68.
    Bohonak DM, Zydney AL (2005) J Membr Sci 254:71–79CrossRefGoogle Scholar
  69. 69.
    Liu X, Ma HY, Hsiao BS (2018) unpublished resultsGoogle Scholar
  70. 70.
    Kidoaki S, Kwon IK, Matsuda T (2005) Biomaterials 26:37–46CrossRefPubMedGoogle Scholar
  71. 71.
    Liu Y, Wang R, Ma HY, Hsiao BS, Chu B (2013) Polymer 54:548–556CrossRefGoogle Scholar
  72. 72.
    Niu H, Wang X, Lin T (2011) Needleless electrospinning: developments and performances. In: Lin T (ed) Nanofibers-production, properties and functional applications. InTech, Rijeka, pp 17–36Google Scholar
  73. 73.
    Agarwal S, Greiner A, Wendorff JH (2008) Polymer 49:5603–5621CrossRefGoogle Scholar
  74. 74.
    Chu B, Hsiao BS, Fang D, Brathwaite C (2004) Biodegradable and/or bioabsorbable fibrous articles and methods for using the articles for medical applications. U.S. Patent 6685956Google Scholar
  75. 75.
    Chu B, Hsiao BS, Fang D (2004) Apparatus and methods for electrospinning polymeric fibers and membranes. U.S. Patent 6713011Google Scholar
  76. 76.
    Chu B, Hsiao BS, Hadjiargyrou M, Fang D, Zong S, Kim K (2004) Cell delivery system comprising a fibrous matrix and cells. U.S. Patent 6790455Google Scholar
  77. 77.
    Teo WE, Ramakrishna S (2006) Nanotechnology 17:R89–R106CrossRefPubMedGoogle Scholar
  78. 78.
    Web of Science database, keywords: “electrospinning or electrospun”Google Scholar
  79. 79.
    Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Macromol Mater Eng 298:504–520CrossRefGoogle Scholar
  80. 80.
    Kaur S, Gopal R, Ng WJ, Ramakrishna S, Matsuura T (2008) MRS Bull 33:21–26CrossRefGoogle Scholar
  81. 81.
    Kriegel C, Arecchi A, Kit K, McClements DJ, Weiss J (2008) Crit Rev Food Sci Nutr 48:775–797CrossRefPubMedGoogle Scholar
  82. 82.
    Petrik S (2011) Industrial production technology for nanofibers. In: Lin T (ed) Nanofibers – production, properties and functional applications. InTech, Rijeka, pp 1–16Google Scholar
  83. 83.
    Fang J, Wang X, Lin T (2011) Functional applications of electrospun nanofibers. In: Lin T (ed) Nanofibers – production, properties and functional applications. InTech, Rijeka, pp 287–326Google Scholar
  84. 84.
    Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Mater Today 9:40–50CrossRefGoogle Scholar
  85. 85.
  86. 86.
  87. 87.
    Liu Y, Ma HY, Liu B, Hsiao BS, Chu B (2015) J Plast Film Sheeting 31:379–400CrossRefGoogle Scholar
  88. 88.
    Yang R, Aubrecht KB, Ma HY, Grubbs RB, Hsiao BS, Chu B (2014) Polymer 55:1167–1176CrossRefGoogle Scholar
  89. 89.
    Yang R, Su Y, Burger C, Aubrecht KB, Wang X, Ma H, Grubbs RB, Hsiao BS, Chu B (2015) Polymer 60:9–17CrossRefGoogle Scholar
  90. 90.
    Barhate RS, Ramakrishna S (2007) J Membr Sci 296:1–8CrossRefGoogle Scholar
  91. 91.
    http://www.britannica.com/facts/5/463522/E-coli-as-discussed-in-bacteria. Facts about E. coli: dimensions, as discussed in “bacteria: diversity of structure of bacteria” in Britannica Online Encyclopedia. Accepted 22 Sept 2013
  92. 92.
    Kaur S, Barhate R, Sundarrajan S, Matruura T, Ramakrishna S (2011) Desalination 279:201–209CrossRefGoogle Scholar
  93. 93.
    Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) J Membr Sci 281:581–586CrossRefGoogle Scholar
  94. 94.
    Barhate RS, Loong CK, Ramakrishna S (2006) J Membr Sci 283:209–218CrossRefGoogle Scholar
  95. 95.
    Woods J, Pellegrino J, Burch J (2011) J Membr Sci 368:124–133CrossRefGoogle Scholar
  96. 96.
    Ke H, Feldman E, Guzman P, Cole J, Wei Q, Chu B, Alkhudhiri A, Alrusheed R, Hsiao BS (2016) J Membr Sci 515:86–97CrossRefGoogle Scholar
  97. 97.
    Wang X, Fang D, Hsiao BS, Chu B (2014) J Membr Sci 469:188–197CrossRefGoogle Scholar
  98. 98.
    Ma HY, Hsiao BS (2018) High-flux thin-film nanocomposite reverse osmosis membrane for desalination. U.S. patent. 2018/0508903Google Scholar
  99. 99.
    Ma Z, Kotaki M, Ramakrishna S (2005) J Membr Sci 265:115–123CrossRefGoogle Scholar
  100. 100.
    Nataraj SK, Yang KS, Aminabhavi TM (2012) Prog Polym Sci 37:487–513CrossRefGoogle Scholar
  101. 101.
    Ahmad FE, Lalia BS, Hashaikeh R (2015) Desalination 356:15–30CrossRefGoogle Scholar
  102. 102.
    Chu B, Hsiao BS, Ma HY (2016) High flux high efficiency nanofiber membranes and methods of production thereof. U.S. Patent 9511329Google Scholar
  103. 103.
    Dong ZQ, Ma XH, Xu ZL, You WT, Li FB (2014) Desalination 347:175–183CrossRefGoogle Scholar
  104. 104.
    Prince JA, Singh G, Rana D, Matsuura T, Anbharasi V, Shanmugasundaram TS (2012) J Membr Sci 397:80–86CrossRefGoogle Scholar
  105. 105.
    Essalhi M, Khayet M (2013) J Membr Sci 433:167–179CrossRefGoogle Scholar
  106. 106.
    Yoon K, Hsiao BS, Chu B (2009) Polymer 50:2893–2899CrossRefGoogle Scholar
  107. 107.
    Tang Z, Qiu C, McCutcheon JR, Yoon K, Ma HY, Fang D, Lee E, Kopp C, Hsiao BS, Chu B (2009) J Polym Sci B Polym Phys 47:2288–2300CrossRefGoogle Scholar
  108. 108.
    Agarwal S, Greiner A, Wendorff JH (2013) Prog Polym Sci 38:963–991CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of ChemistryStony Brook UniversityStony BrookUSA

Personalised recommendations