Advertisement

Bispecific and Biparatopic Antibody Drug Conjugates

  • Frank Comer
  • Changshou Gao
  • Steve Coats
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

The conceptual framework for antibody drug conjugates (ADC’s) emerged contemporaneously with the discovery of antibodies, with Paul Ehrlich proposing in the early 1900’s the concept of a “magic bullet”, an ideal therapeutic that would specifically target a disease-causing agent without causing harm to the body. This concept still underpins the overarching goal of biopharmaceutical development today: to produce drugs that have a broad therapeutic index by effectively targeting the disease while causing minimal damage to normal tissue. Although the concept of ADC’s is simple, achieving the ideal combination of properties has proven challenging, as reflected by the limited number of ADC’s that have demonstrated success in the clinic to date. Recent years have witnessed a burgeoning field, with the number of clinical stage ADC’s more than doubling in just the last two years to more than 70 candidates currently in clinical development. Despite the successes to date and the prospect of new ADC’s reaching patients in the coming years, many challenges remain and there is substantial room for improvement, most notably in improving the therapeutic index. The key challenge in developing an ADC is balancing its efficacy and safety. This review will focus on ways to capitalize on bispecific antibody technology to improve the therapeutic index of ADC’s, in pursuit of the magic bullet ideal. The nature of bispecific antibodies allows for fine tuning of the interactions between each target to impact the overall properties of the molecule. Here, we discuss some of the cutting edge bispecific antibody strategies that are currently under investigation to address both the efficacy and safety aspects of ADC’s.

Keywords

Bispecific Antibody drug conjugate ADC Bispecific format Therapeutic index 

References

  1. 1.
    Beck A et al (2017) Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 16:315CrossRefPubMedGoogle Scholar
  2. 2.
    Thomas A, Teicher BA, Hassan R (2016) Antibody–drug conjugates for cancer therapy. Lancet Oncol 17(6):e254-e262CrossRefPubMedGoogle Scholar
  3. 3.
    Lambert JM, Morris CQ (2017) Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: a review. Adv Ther 34:1015CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tolcher AW (2016) Antibody drug conjugates: lessons from 20 years of clinical experience. Ann Oncol 27(12):2168–2172CrossRefPubMedGoogle Scholar
  5. 5.
    Kontermann RE (2012) Dual targeting strategies with bispecific antibodies. MAbs 4(2):182–197CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    May C, Sapra P, Gerber H-P (2012) Advances in bispecific biotherapeutics for the treatment of cancer. Biochem Pharmacol 84(9):1105–1112CrossRefPubMedGoogle Scholar
  7. 7.
    Yang F, Wen W, Qin W (2016) Bispecific antibodies as a development platform for new concepts and treatment strategies. Int J Mol Sci 18(1)CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Fan GW et al (2015) Bispecific antibodies and their applications. J Hematol Oncol:8Google Scholar
  9. 9.
    Boku N (2014) HER2-positive gastric cancer. Gastric Cancer 17(1):1–12CrossRefPubMedGoogle Scholar
  10. 10.
    ZW33, Anti-HER2 x HER2 ADC Overview, Zymeworks Company Website. July 2017.; Available from: https://www.zymeworks.com/our-pipeline/zw33
  11. 11.
    Li JY et al (2016) A Biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 29(1):117–129CrossRefPubMedGoogle Scholar
  12. 12.
    Mazor Y et al (2017) Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep 7:40098CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    de Goeij BE et al (2016) Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol Cancer Ther 15(11):2688–2697CrossRefPubMedGoogle Scholar
  14. 14.
    Andreev J et al (2017) Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther 16:681CrossRefPubMedGoogle Scholar
  15. 15.
    Nisonoff A, Rivers MM (1961) Recombination of a mixture of univalent antibody fragments of different specificity. Arch Biochem Biophys 93(2):460CrossRefPubMedGoogle Scholar
  16. 16.
    Brennan M, Davison PF, Paulus H (1985) Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 229(4708):81–83CrossRefPubMedGoogle Scholar
  17. 17.
    Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497CrossRefPubMedGoogle Scholar
  18. 18.
    Brinkmann U, Kontermann RE (2017) The making of bispecific antibodies. MAbs 9(2):182–212CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Spiess C, Zhai Q, Carter PJ (2015) Alternative molecular formats and therapeutic applications for bispecific antibodies. Therapeutic antibodies: discovery, design and deployment. Mol Immunol 67(2, Part A):95–106CrossRefPubMedGoogle Scholar
  20. 20.
    Ha JH, Kim JE, Kim YS (2016) Immunoglobulin Fc heterodimer platform technology: from design to applications in therapeutic antibodies and proteins. Front Immunol 7:394CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu H et al (2017) Fc engineering for developing therapeutic bispecific antibodies and novel scaffolds. Front Immunol 8:38PubMedPubMedCentralGoogle Scholar
  22. 22.
    Krah S et al (2017) Engineering bispecific antibodies with defined chain pairing. New Biotechnol 39:167CrossRefGoogle Scholar
  23. 23.
    Bostrom J et al (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323(5921):1610–1614CrossRefPubMedGoogle Scholar
  24. 24.
    Fischer N et al (2015) Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat Commun 6:6113CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dimasi N et al (2017) Guiding bispecific monovalent antibody formation through proteolysis of IgG1 single-chain. MAbs 9(3):438–454CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Choi HJ et al (2015) Engineering of immunoglobulin fc heterodimers using yeast surface-displayed combinatorial fc library screening. PLoS One 10(12):e0145349CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wranik BJ et al (2012) LUZ-Y, a novel platform for the mammalian cell production of full-length IgG-bispecific antibodies. J Biol Chem 287(52):43331–43339CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Leaver-Fay A et al (2016) Computationally designed bispecific antibodies using negative state repertoires. Structure 24(4):641–651CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Moretti P et al (2013) BEAT® the bispecific challenge: a novel and efficient platform for the expression of bispecific IgGs. BMC Proc 7(6):O9CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Davis JH et al (2010) SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 23(4):195–202CrossRefPubMedGoogle Scholar
  31. 31.
    de Kruif C.A., Hendriks L.J.A., Logtenberg T. (2016) Methods and means for the production of Ig-like molecules. Google PatentsGoogle Scholar
  32. 32.
    Choi HJ et al (2013) A heterodimeric Fc-based bispecific antibody simultaneously targeting VEGFR-2 and met exhibits potent antitumor activity. Mol Cancer Ther 12(12):2748–2759CrossRefPubMedGoogle Scholar
  33. 33.
    Strop P et al (2012) Generating bispecific human IgG1 and IgG2 antibodies from any antibody pair. J Mol Biol 420(3):204–219CrossRefPubMedGoogle Scholar
  34. 34.
    Gunasekaran K et al (2010) Enhancing antibody fc heterodimer formation through electrostatic steering effects applications to bispecific molecules and monovalent IgG. J Biol Chem 285(25):19637–19646CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Von Kreudenstein TS et al (2013) Improving biophysical properties of a bispecific antibody scaffold to aid developability: quality by molecular design. MAbs 5(5):646–654CrossRefGoogle Scholar
  36. 36.
    Merchant AM et al (1998) An efficient route to human bispecific IgG. Nat Biotechnol 16(7):677–681CrossRefPubMedGoogle Scholar
  37. 37.
    Labrijn AF et al (2013) Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc Natl Acad Sci 110(13):5145–5150CrossRefPubMedGoogle Scholar
  38. 38.
    Moore GL et al (2011) A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens. MAbs 3(6):546–557CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Schaefer W et al (2011) Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci U S A 108(27):11187–11192CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mazor Y et al (2015) Improving target cell specificity using a novel monovalent bispecific IgG design. MAbs 7(2):377–389CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Liu Z et al (2015) A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism. J Biol Chem 290(12):7535–7562CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Coloma MJ, Morrison SL (1997) Design and production of novel tetravalent bispecific antibodies. Nat Biotechnol 15(2):159–163CrossRefPubMedGoogle Scholar
  43. 43.
    DiGiandomenico A et al (2014) A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci Transl Med 6(262):262ra155CrossRefPubMedGoogle Scholar
  44. 44.
    Bezabeh B et al (2017) Insertion of scFv into the hinge domain of full-length IgG1 monoclonal antibody results in tetravalent bispecific molecule with robust properties. MAbs 9(2):240–256CrossRefPubMedGoogle Scholar
  45. 45.
    Hinrichs MJ, Dixit R (2015) Antibody drug conjugates: nonclinical safety considerations. AAPS J 17(5):1055–1064CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Donaghy H (2016) Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 8(4):659–671CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Mazor Y et al (2015) Insights into the molecular basis of a bispecific antibody's target selectivity. MAbs 7(3):461–469CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Jakob CG et al (2013) Structure reveals function of the dual variable domain immunoglobulin (DVD-Ig (TM)) molecule. MAbs 5(3):358–363CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Godar M et al (2016) Dual anti-idiotypic purification of a novel, native-format biparatopic anti-MET antibody with improved in vitro and in vivo efficacy. Sci Rep 6Google Scholar
  50. 50.
    Ritchie M, Tchistiakova L, Scott N (2013) Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. MAbs 5(1):13–21CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Xu S (2015) Internalization, trafficking, intracellular processing and actions of antibody-drug conjugates. Pharm Res 32(11):3577–3583CrossRefPubMedGoogle Scholar
  52. 52.
    Austin CD et al (2004) Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15(12):5268–5282CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Robert B et al (1999) Tumor targeting with newly designed biparatopic antibodies directed against two different epitopes of the carcinoembryonic antigen (CEA). Int J Cancer 81(2):285–291CrossRefPubMedGoogle Scholar
  54. 54.
    Friedman LM et al (2005) Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci U S A 102(6):1915–1920CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Spangler JB et al (2010) Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci U S A 107(30):13252–13257CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hackel BJ et al (2012) Epidermal growth factor receptor downregulation by small heterodimeric binding proteins. Protein Eng Des Sel 25(2):47–57CrossRefPubMedGoogle Scholar
  57. 57.
    Dienstmann R et al (2015) Safety and activity of the first-in-class Sym004 anti-EGFR antibody mixture in patients with refractory colorectal cancer. Cancer Discov 5(6):598–609CrossRefPubMedGoogle Scholar
  58. 58.
    Pedersen MW et al (2010) Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res 70(2):588–597CrossRefPubMedGoogle Scholar
  59. 59.
    Brack S et al (2014) A bispecific HER2-targeting FynomAb with superior antitumor activity and novel mode of action. Mol Cancer Ther 13(8):2030–2039CrossRefPubMedGoogle Scholar
  60. 60.
    Thuss-Patience PC et al (2017) Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol 18:640CrossRefPubMedGoogle Scholar
  61. 61.
    Perez EA et al (2017) Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: primary results from the phase III MARIANNE study. J Clin Oncol 35(2):141–148CrossRefPubMedGoogle Scholar
  62. 62.
    Burstein HJ (2005) The distinctive nature of HER2-positive breast cancers. N Engl J Med 353(16):1652–1654CrossRefPubMedGoogle Scholar
  63. 63.
    Lee JM et al (2016) Novel strategy for a bispecific antibody: induction of dual target internalization and degradation. Oncogene 35:4437CrossRefPubMedGoogle Scholar
  64. 64.
    Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315(9):1584–1592CrossRefPubMedGoogle Scholar
  65. 65.
    Waldron NN et al (2014) A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target Oncol 9(3):239–249CrossRefPubMedGoogle Scholar
  66. 66.
    Tzeng A et al (2015) Antigen specificity can be irrelevant to immunocytokine efficacy and biodistribution. Proc Natl Acad Sci 112(11):3320–3325CrossRefPubMedGoogle Scholar
  67. 67.
    Sellmann C et al (2016) Balancing selectivity and efficacy of bispecific EGFR x c-MET antibodies and antibody-drug conjugates. J Biol Chem 291:25106CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Rudnick SI, Adams GP (2009) Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm 24(2):155–161CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kovtun YV, Goldmacher VS (2007) Cell killing by antibody-drug conjugates. Cancer Lett 255(2):232–240CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.BiosuperiorsMedImmune LLCGaithersburgUSA
  2. 2.Antibody Discovery and Protein EngineeringMedImmune LLCGaithersburgUSA
  3. 3.Oncology DevelopmentMedImmune LLCGaithersburgUSA

Personalised recommendations