Advertisement

Fibroblasts and Osteoblasts in Inflammation and Bone Damage

  • Jason D. Turner
  • Amy J. Naylor
  • Christopher Buckley
  • Andrew Filer
  • Paul-Peter Tak
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1060)

Abstract

This review discusses the important role fibroblasts play in the process of inflammation and the evidence that these cells may drive the persistence of inflammation. Fibroblasts are key components of the stroma normally involved in maintenance of extracellular matrix and tissue function; however, the term ‘fibroblast’ is used to describe a heterogeneous population of cells that vary in phenotype both between and within anatomical sites. Fibroblasts possess Toll-like receptors allowing them to respond to pathogen and damage-related signals by producing proinflammatory mediators such as IL-6, PGE2, and GM-CSF and can produce a range of chemokines such as CXCL12, CXCL13, and CXCL8 which attract B and T lymphocytes, monocytes, and neutrophils to sites of inflammation. Interactions between leukocytes and fibroblasts can facilitate increased survival of the leukocytes and modulate phenotypes leading to differential gene expression in the presence of mediators involved in inflammation. Fibroblasts also contribute to collateral tissue damage during inflammation through the production of members of the metalloproteinase family and cathepsins and also through induction of osteoclastogenesis leading to increased bone resorption rates. In persistent diseases, fibroblasts obtain an imprinted, aggressive phenotype leading to the production of higher basal levels of proinflammatory cytokines and the ability to damage tissue in the absence of continual stimuli. This aggressive phenotype offers an attractive new target for therapeutics that could help alleviate the burden of persistent inflammation.

Keywords

Fibroblast Synovial fibroblast Osteoblast Rheumatoid arthritis Stromal immunology Epigenetics 

References

  1. 1.
    Parsonage G, Filer AD, Haworth O, Nash GB, Rainger GE, Salmon M, Buckley CD. A stromal address code defined by fibroblasts. Trends Immunol. 2005;26(3):150–6.  https://doi.org/10.1016/j.it.2004.11.014.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol. 2001;166(12):7556–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Pilling D, Fan T, Huang D, Kaul B, Gomer RH. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One. 2009;4(10):e7475.  https://doi.org/10.1371/journal.pone.0007475.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.  https://doi.org/10.1038/nri2395.CrossRefPubMedGoogle Scholar
  5. 5.
    Lee CH, Shah B, Moioli EK, Mao JJ. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 2010;120(9):3340–9.  https://doi.org/10.1172/jci43230.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Parsonage G, Falciani F, Burman A, Filer A, Ross E, Bofill M, Martin S, Salmon M, Buckley CD. Global gene expression profiles in fibroblasts from synovial, skin and lymphoid tissue reveals distinct cytokine and chemokine expression patterns. Thromb Haemost. 2003;90(4):688–97.  https://doi.org/10.1267/thro03040688.CrossRefPubMedGoogle Scholar
  7. 7.
    Filer A, Antczak P, Parsonage GN, Legault HM, O’Toole M, Pearson MJ, Thomas AM, Scheel-Toellner D, Raza K, Buckley CD, Falciani F. Stromal transcriptional profiles reveal hierarchies of anatomical site, serum response and disease and identify disease specific pathways. PLoS One. 2015;10(3):e0120917.  https://doi.org/10.1371/journal.pone.0120917.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2006;2(7):e119.  https://doi.org/10.1371/journal.pgen.0020119.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chang HY, Chi J-T, Dudoit S, Bondre C, Mvd R, Botstein D, Brown PO. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A. 2002;99(20):12877–82.  https://doi.org/10.2307/3073316.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kiener HP, Niederreiter B, Lee DM, Jimenez-Boj E, Smolen JS, Brenner MB. Cadherin 11 promotes invasive behavior of fibroblast-like synoviocytes. Arthritis Rheum. 2009;60(5):1305–10.  https://doi.org/10.1002/art.24453.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lee DM, Kiener HP, Agarwal SK, Noss EH, Watts GFM, Chisaka O, Takeichi M, Brenner MB. Cadherin-11 in synovial lining formation and pathology in arthritis. Science. 2007;315(5814):1006–10.  https://doi.org/10.1126/science.1137306.CrossRefPubMedGoogle Scholar
  12. 12.
    Valencia X, Higgins JM, Kiener HP, Lee DM, Podrebarac TA, Dascher CC, Watts GF, Mizoguchi E, Simmons B, Patel DD, Bhan AK, Brenner MB. Cadherin-11 provides specific cellular adhesion between fibroblast-like synoviocytes. J Exp Med. 2004;200(12):1673–9.  https://doi.org/10.1084/jem.20041545.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bauer S, Jendro M, Wadle A, Kleber S, Stenner F, Dinser R, Reich A, Faccin E, Godde S, Dinges H, Muller-Ladner U, Renner C. Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. Arthritis Res Ther. 2006;8(6):R171.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Del Rey MJ, Faré R, Izquierdo E, Usategui A, Rodríguez-Fernández JL, Suárez-Fueyo A, Cañete JD, Pablos JL. Clinicopathological correlations of podoplanin (gp38) expression in rheumatoid synovium and its potential contribution to fibroblast platelet crosstalk. PLoS One. 2014;9(6):e99607.  https://doi.org/10.1371/journal.pone.0099607.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ekwall A-K, Eisler T, Anderberg C, Jin C, Karlsson N, Brisslert M, Bokarewa M. The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis. Arthritis Res Ther. 2011;13(2):R40.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    MacFadyen JR, Haworth O, Roberston D, Hardie D, Webster M-T, Morris HR, Panico M, Sutton-Smith M, Dell A, van der Geer P, Wienke D, Buckley CD, Isacke CM. Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Lett. 2005;579(12):2569–75.  https://doi.org/10.1016/j.febslet.2005.03.071.CrossRefPubMedGoogle Scholar
  17. 17.
    Maia M, de Vriese A, Janssens T, Moons M, van Landuyt K, Tavernier J, Lories RJ, Conway EM. CD248 and its cytoplasmic domain: a therapeutic target for arthritis. Arthritis Rheum. 2010;62(12):3595–606.  https://doi.org/10.1002/art.27701.CrossRefPubMedGoogle Scholar
  18. 18.
    Saalbach A, Aneregg U, Bruns M, Schnabel E, Herrmann K, Haustein UF. Novel fibroblast-specific monoclonal antibodies: properties and specificities. J Invest Dermatol. 1996;106(6):1314–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Saalbach A, Kraft R, Herrmann K, Haustein UF, Anderegg U. The monoclonal antibody AS02 recognizes a protein on human fibroblasts being highly homologous to Thy-1. Arch Dermatol Res. 1998;290(7):360–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Gitter BD, Labus JM, Lees SL, Scheetz ME. Characteristics of human synovial fibroblast activation by IL-1 beta and TNF alpha. Immunology. 1989;66(2):196–200.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Ospelt C, Brentano F, Rengel Y, Stanczyk J, Kolling C, Tak PP, Gay RE, Gay S, Kyburz D. Overexpression of Toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: Toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum. 2008;58(12):3684–92.  https://doi.org/10.1002/art.24140.CrossRefPubMedGoogle Scholar
  22. 22.
    Okamoto H, Yamamura M, Morita Y, Harada S, Makino H, Ota Z. The synovial expression and serum levels of interleukin-6, interleukin-11, leukemia inhibitory factor, and oncostatin M in rheumatoid arthritis. Arthritis Rheum. 1997;40(6):1096–105.  https://doi.org/10.1002/1529-0131(199706)40:6<1096::AID-ART13>3.0.CO;2-D.CrossRefPubMedGoogle Scholar
  23. 23.
    Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, Kim HY. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther. 2004;6(2):R120–8.  https://doi.org/10.1186/ar1038.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Parsonage G, Filer A, Bik M, Hardie D, Lax S, Howlett K, Church LD, Raza K, Wong SH, Trebilcock E, Scheel-Toellner D, Salmon M, Lord JM, Buckley CD. Prolonged, granulocyte-macrophage colony-stimulating factor-dependent, neutrophil survival following rheumatoid synovial fibroblast activation by IL-17 and TNFalpha. Arthritis Res Ther. 2008;10(2):R47.  https://doi.org/10.1186/ar2406.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zucali JR, Dinarello CA, Oblon DJ, Gross MA, Anderson L, Weiner RS. Interleukin 1 stimulates fibroblasts to produce granulocyte-macrophage colony-stimulating activity and prostaglandin E2. J Clin Investig. 1986;77(6):1857–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Donlin LT, Jayatilleke A, Giannopoulou EG, Kalliolias GD, Ivashkiv LB. Modulation of TNF-induced macrophage polarization by synovial fibroblasts. J Immunol. 2014;193(5):2373–83.  https://doi.org/10.4049/jimmunol.1400486.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chomarat P, Rissoan MC, Pin JJ, Banchereau J, Miossec P. Contribution of IL-1, CD14, and CD13 in the increased IL-6 production induced by in vitro monocyte-synoviocyte interactions. J Immunol. 1995;155(7):3645–52.PubMedGoogle Scholar
  28. 28.
    Bradfield PF, Amft N, Vernon-Wilson E, Exley AE, Parsonage G, Rainger GE, Nash GB, Thomas AM, Simmons DL, Salmon M, Buckley CD. Rheumatoid fibroblast-like synoviocytes overexpress the chemokine stromal cell-derived factor 1 (CXCL12), which supports distinct patterns and rates of CD4+ and CD8+ T cell migration within synovial tissue. Arthritis Rheum. 2003;48(9):2472–82.  https://doi.org/10.1002/art.11219.CrossRefPubMedGoogle Scholar
  29. 29.
    Burger JA, Zvaifler NJ, Tsukada N, Firestein GS, Kipps TJ. Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell-derived factor-1- and CD106 (VCAM-1)-dependent mechanism. J Clin Invest. 2001;107(3):305–15.  https://doi.org/10.1172/jci11092.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Scaife S, Brown R, Kellie S, Filer A, Martin S, Thomas AMC, Bradfield PF, Amft N, Salmon M, Buckley CD. Detection of differentially expressed genes in synovial fibroblasts by restriction fragment differential display. Rheumatology. 2004;43(11):1346–52.  https://doi.org/10.1093/rheumatology/keh347.CrossRefPubMedGoogle Scholar
  31. 31.
    Pierer M, Rethage J, Seibl R, Lauener R, Brentano F, Wagner U, Hantzschel H, Michel BA, Gay RE, Gay S, Kyburz D. Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Toll-like receptor 2 ligands. J Immunol. 2004;172(2):1256–65.  https://doi.org/10.4049/jimmunol.172.2.1256.CrossRefPubMedGoogle Scholar
  32. 32.
    Kim KW, Cho ML, Kim HR, Ju JH, Park MK, Oh HJ, Kim JS, Park SH, Lee SH, Kim HY. Up-regulation of stromal cell-derived factor 1 (CXCL12) production in rheumatoid synovial fibroblasts through interactions with T lymphocytes: role of interleukin-17 and CD40L-CD40 interaction. Arthritis Rheum. 2007;56(4):1076–86.  https://doi.org/10.1002/art.22439.CrossRefPubMedGoogle Scholar
  33. 33.
    Hayashida K, Nanki T, Girschick H, Yavuz S, Ochi T, Lipsky P. Synovial stromal cells from rheumatoid arthritis patients attract monocytes by producing MCP-1 and IL-8. Arthritis Res. 2001;3(2):1–9.  https://doi.org/10.1186/ar149.CrossRefGoogle Scholar
  34. 34.
    Chan A, Filer A, Parsonage G, Kollnberger S, Gundle R, Buckley CD, Bowness P. Mediation of the proinflammatory cytokine response in rheumatoid arthritis and spondylarthritis by interactions between fibroblast-like synoviocytes and natural killer cells. Arthritis Rheum. 2008;58(3):707–17.  https://doi.org/10.1002/art.23264.CrossRefPubMedGoogle Scholar
  35. 35.
    Benito-Miguel M, García-Carmona Y, Balsa A, Bautista-Caro M-B, Arroyo-Villa I, Cobo-Ibáñez T, Bonilla-Hernán MG, de Ayala CP, Sánchez-Mateos P, Martín-Mola E, Miranda-Carús M-E. IL-15 expression on RA synovial fibroblasts promotes B cell survival. PLoS One. 2012;7(7):e40620.  https://doi.org/10.1371/journal.pone.0040620.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bombardieri M, Kam NW, Brentano F, Choi K, Filer A, Kyburz D, McInnes IB, Gay S, Buckley C, Pitzalis C. A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. Ann Rheum Dis. 2011;70(10):1857–65.  https://doi.org/10.1136/ard.2011.150219.CrossRefPubMedGoogle Scholar
  37. 37.
    Filer A, Parsonage G, Smith E, Osborne C, Thomas AM, Curnow SJ, Rainger GE, Raza K, Nash GB, Lord J, Salmon M, Buckley CD. Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts: site-specific versus activation-dependent survival of T cells and neutrophils. Arthritis Rheum. 2006;54(7):2096–108.  https://doi.org/10.1002/art.21930.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Muller-Ladner U, Kriegsmann J, Franklin BN, Matsumoto S, Geiler T, Gay RE, Gay S. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol. 1996;149(5):1607–15.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Unemori EN, Hibbs MS, Amento EP. Constitutive expression of a 92-kD gelatinase (type V collagenase) by rheumatoid synovial fibroblasts and its induction in normal human fibroblasts by inflammatory cytokines. J Clin Invest. 1991;88(5):1656–62.  https://doi.org/10.1172/jci115480.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pap T, Aupperle KR, Gay S, Firestein GS, Gay RE. Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum. 2001;44(3):676– 81.  https://doi.org/10.1002/1529-0131(200103)44:3<676::aid-anr117>3.0.co;2-6.CrossRefPubMedGoogle Scholar
  41. 41.
    Lefevre S, Knedla A, Tennie C, Kampmann A, Wunrau C, Dinser R, Korb A, Schnaker EM, Tarner IH, Robbins PD, Evans CH, Sturz H, Steinmeyer J, Gay S, Scholmerich J, Pap T, Muller-Ladner U, Neumann E. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat Med. 2009;15(12):1414–20.  https://doi.org/10.1038/nm.2050.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Huybrechts-Godin G, Hauser P, Vaes G. Macrophage-fibroblast interactions in collagenase production and cartilage degradation. Biochem J. 1979;184(3):643–50.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Janusz MJ, Hare M. Cartilage degradation by cocultures of transformed macrophage and fibroblast cell lines. A model of metalloproteinase-mediated connective tissue degradation. J Immunol. 1993;150(5):1922–31.PubMedGoogle Scholar
  44. 44.
    Scott BB, Weisbrot LM, Greenwood JD, Bogoch ER, Paige CJ, Keystone EC. Rheumatoid arthritis synovial fibroblast and U937 macrophage/monocyte cell line interaction in cartilage degradation. Arthritis Rheum. 1997;40(3):490–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.  https://doi.org/10.1038/nbt.1685.CrossRefPubMedGoogle Scholar
  46. 46.
    Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol. 2010;11(9):607–20. http://www.nature.com/nrm/journal/v11/n9/suppinfo/nrm2950_S1.html CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Huber L, Brock M, Hemmatazad H, Giger O, Moritz F, Trenkmann M, Distler J, Gay R, Kolling C, Moch H, Michel B, Gay S, Distler O, Jungel A. Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum. 2007;56:1087–93.CrossRefPubMedGoogle Scholar
  48. 48.
    Kawabata T, Nishida K, Takasugi K, Ogawa H, Sada K, Kadota Y, Inagaki J, Hirohata S, Ninomiya Y, Makino H. Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-alpha in synovial tissue of rheumatoid arthritis. Arthritis Res Ther. 2010;12:R133.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wada TT, Araki Y, Sato K, Aizaki Y, Yokota K, Kim YT, Oda H, Kurokawa R, Mimura T. Aberrant histone acetylation contributes to elevated interleukin-6 production in rheumatoid arthritis synovial fibroblasts. Biochem Biophys Res Commun. 2014;444(4):682–6.  https://doi.org/10.1016/j.bbrc.2014.01.195.CrossRefPubMedGoogle Scholar
  50. 50.
    Grabiec A, Korchynskyi O, Tak P, Reedquist K. Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann Rheum Dis. 2012;71:424–31.CrossRefPubMedGoogle Scholar
  51. 51.
    Karouzakis E, Gay R, Michel B, Gay S, Neidhart M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 2009;60:3613–22.CrossRefPubMedGoogle Scholar
  52. 52.
    de la Rica L, Urquiza JM, Gómez-Cabrero D, Islam ABMMK, López-Bigas N, Tegnér J, Toes REM, Ballestar E. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J Autoimmun. 2013;41(0):6–16.  https://doi.org/10.1016/j.jaut.2012.12.005.CrossRefPubMedGoogle Scholar
  53. 53.
    He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.CrossRefPubMedGoogle Scholar
  54. 54.
    Long L, Yu P, Liu Y, Wang S, Li R, Shi J, Zhang X, Li Y, Sun X, Zhou B, Cui L, Li Z. Upregulated microRNA-155 expression in peripheral blood mononuclear cells and fibroblast-like synoviocytes in rheumatoid arthritis. Clin Dev Immunol. 2013;2013:296139.  https://doi.org/10.1155/2013/296139.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Stanczyk J, Pedrioli DML, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008;58(4):1001–9.  https://doi.org/10.1002/art.23386.CrossRefPubMedGoogle Scholar
  56. 56.
    Lin J, Huo R, Xiao L, Zhu X, Xie J, Sun S, He Y, Zhang J, Sun Y, Zhou Z, Wu P, Shen B, Li D, Li N. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis. Arthritis Rheum. 2014;66(1):49–59.  https://doi.org/10.1002/art.38142.CrossRefGoogle Scholar
  57. 57.
    Bar-Shavit Z. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem. 2007;102(5):1130–9.  https://doi.org/10.1002/jcb.21553.CrossRefPubMedGoogle Scholar
  58. 58.
    Sims NA, Gooi JH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol. 2008;19(5):444–51.  https://doi.org/10.1016/j.semcdb.2008.07.016.CrossRefPubMedGoogle Scholar
  59. 59.
    Goldring SR. Periarticular bone changes in rheumatoid arthritis: pathophysiological implications and clinical utility. Ann Rheum Dis. 2009;68(3):297–9.  https://doi.org/10.1136/ard.2008.099408.CrossRefPubMedGoogle Scholar
  60. 60.
    Klareskog L, van der Heijde D, de Jager JP, Gough A, Kalden J, Malaise M, Martin Mola E, Pavelka K, Sany J, Settas L, Wajdula J, Pedersen R, Fatenejad S, Sanda M. Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet. 2004;363(9410):675–81.  https://doi.org/10.1016/s0140-6736(04)15640-7.CrossRefPubMedGoogle Scholar
  61. 61.
    Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8(3):133–43.  https://doi.org/10.1038/nrrheum.2012.1.CrossRefPubMedGoogle Scholar
  62. 62.
    Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2012;13(1):27–38.  https://doi.org/10.1038/nrm3254.CrossRefGoogle Scholar
  63. 63.
    Walsh NC, Reinwald S, Manning CA, Condon KW, Iwata K, Burr DB, Gravallese EM. Osteoblast function is compromised at sites of focal bone erosion in inflammatory arthritis. J Bone Miner Res. 2009;24(9):1572–85.  https://doi.org/10.1359/jbmr.090320.CrossRefPubMedGoogle Scholar
  64. 64.
    Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, Nanes MS. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. 2000;141(11):3956–64.  https://doi.org/10.1210/endo.141.11.7739.CrossRefPubMedGoogle Scholar
  65. 65.
    Gilbert L, He X, Farmer P, Rubin J, Drissi H, van Wijnen AJ, Lian JB, Stein GS, Nanes MS. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem. 2002;277(4):2695–701.  https://doi.org/10.1074/jbc.M106339200.CrossRefPubMedGoogle Scholar
  66. 66.
    Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986;319(6053):516–8.  https://doi.org/10.1038/319516a0.CrossRefPubMedGoogle Scholar
  67. 67.
    Centrella M, McCarthy TL, Canalis E. Tumor necrosis factor-alpha inhibits collagen synthesis and alkaline phosphatase activity independently of its effect on deoxyribonucleic acid synthesis in osteoblast-enriched bone cell cultures. Endocrinology. 1988;123(3):1442–8.  https://doi.org/10.1210/endo-123-3-1442.CrossRefPubMedGoogle Scholar
  68. 68.
    Li YP, Stashenko P. Proinflammatory cytokines tumor necrosis factor-alpha and IL-6, but not IL-1, down-regulate the osteocalcin gene promoter. J Immunol. 1992;148(3):788–94.PubMedGoogle Scholar
  69. 69.
    Panagakos FS, Fernandez C, Kumar S. Ultrastructural analysis of mineralized matrix from human osteoblastic cells: effect of tumor necrosis factor-alpha. Mol Cell Biochem. 1996;158(1):81–9.PubMedGoogle Scholar
  70. 70.
    Liu XH, Kirschenbaum A, Yao S, Levine AC. Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology. 2005;146(4):1991–8.  https://doi.org/10.1210/en.2004-1167.CrossRefPubMedGoogle Scholar
  71. 71.
    Musacchio E, Valvason C, Botsios C, Ostuni F, Furlan A, Ramonda R, Modesti V, Sartori L, Punzi L. The tumor necrosis factor-{alpha}-blocking agent infliximab inhibits interleukin 1beta (IL-1beta) and IL-6 gene expression in human osteoblastic cells. J Rheumatol. 2009;36(8):1575–9.  https://doi.org/10.3899/jrheum.081321.CrossRefPubMedGoogle Scholar
  72. 72.
    Hengartner NE, Fiedler J, Ignatius A, Brenner RE. IL-1beta inhibits human osteoblast migration. Mol Med. 2013;19:36–42.  https://doi.org/10.2119/molmed.2012.00058.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Nguyen L, Dewhirst FE, Hauschka PV, Stashenko P. Interleukin-1 beta stimulates bone resorption and inhibits bone formation in vivo. Lymphokine Cytokine Res. 1991;10(1–2):15–21.PubMedGoogle Scholar
  74. 74.
    Stashenko P, Dewhirst FE, Rooney ML, Desjardins LA, Heeley JD. Interleukin-1 beta is a potent inhibitor of bone formation in vitro. J Bone Miner Res. 1987;2(6):559–65.  https://doi.org/10.1002/jbmr.5650020612.CrossRefPubMedGoogle Scholar
  75. 75.
    Almeida M, Han L, Martin-Millan M, O’Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem. 2007;282(37):27298–305.  https://doi.org/10.1074/jbc.M702811200.CrossRefPubMedGoogle Scholar
  76. 76.
    Brandao-Burch A, Utting JC, Orriss IR, Arnett TR. Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif Tissue Int. 2005;77(3):167–74.  https://doi.org/10.1007/s00223-004-0285-8.CrossRefPubMedGoogle Scholar
  77. 77.
    Colla S, Zhan F, Xiong W, Wu X, Xu H, Stephens O, Yaccoby S, Epstein J, Barlogie B, Shaughnessy JD Jr. The oxidative stress response regulates DKK1 expression through the JNK signaling cascade in multiple myeloma plasma cells. Blood. 2007;109(10):4470–7.  https://doi.org/10.1182/blood-2006-11-056747.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kim KW, Cho ML, Lee SH, Oh HJ, Kang CM, Ju JH, Min SY, Cho YG, Park SH, Kim HY. Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2 and TLR-4 activation. Immunol Lett. 2007;110(1):54–64.  https://doi.org/10.1016/j.imlet.2007.03.004.CrossRefPubMedGoogle Scholar
  79. 79.
    Kim KW, Cho ML, Oh HJ, Kim HR, Kang CM, Heo YM, Lee SH, Kim HY. TLR-3 enhances osteoclastogenesis through upregulation of RANKL expression from fibroblast-like synoviocytes in patients with rheumatoid arthritis. Immunol Lett. 2009;124(1):9–17.  https://doi.org/10.1016/j.imlet.2009.02.006.CrossRefPubMedGoogle Scholar
  80. 80.
    Matzelle MM, Gallant MA, Condon KW, Walsh NC, Manning CA, Stein GS, Lian JB, Burr DB, Gravallese EM. Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum. 2012;64(5):1540–50.  https://doi.org/10.1002/art.33504.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13(2):156–63.  https://doi.org/10.1038/nm1538.CrossRefPubMedGoogle Scholar
  82. 82.
    Uderhardt S, Diarra D, Katzenbeisser J, David JP, Zwerina J, Richards W, Kronke G, Schett G. Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann Rheum Dis. 2010;69(3):592–7.  https://doi.org/10.1136/ard.2008.102046.CrossRefPubMedGoogle Scholar
  83. 83.
    Chen XX, Baum W, Dwyer D, Stock M, Schwabe K, Ke HZ, Stolina M, Schett G, Bozec A. Sclerostin inhibition reverses systemic, periarticular and local bone loss in arthritis. Ann Rheum Dis. 2013;72(10):1732–6.  https://doi.org/10.1136/annrheumdis-2013-203345.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Jungel A, Baresova V, Ospelt C, Simmen B, Michel B, Gay R, Gay S, Seemayer C, Neidhart M. Trichostatin A sensitises rheumatoid arthritis synovial fibroblasts for TRAIL-induced apoptosis. Ann Rheum Dis. 2006;65:910–2.CrossRefPubMedGoogle Scholar
  85. 85.
    Nasu Y, Nishida K, Miyazawa S, Komiyama T, Kadota Y, Abe N, Yoshida A, Hirohata S, Ohtsuka A, Ozaki T. Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced arthritis mouse model. Osteoarthr Cartil. 2008;16:723–32.CrossRefPubMedGoogle Scholar
  86. 86.
    Vojinovic J, Damjanov N, D’Urzo C, Furlan A, Susic G, Pasic S, Iagaru N, Stefan M, Dinarello CA. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2011;63(5):1452–8.  https://doi.org/10.1002/art.30238.CrossRefPubMedGoogle Scholar
  87. 87.
    Yang C-R, Shih K-S, Liou J-P, Wu Y-W, Hsieh IN, Lee H-Y, Lin T-C, Wang J-H. Denbinobin upregulates miR-146a expression and attenuates IL-1β-induced upregulation of ICAM-1 and VCAM-1 expressions in osteoarthritis fibroblast-like synoviocytes. J Mol Med. 2014:1–12.  https://doi.org/10.1007/s00109-014-1192-8.
  88. 88.
    Yao Y, Jia T, Pan Y, Gou H, Li Y, Sun Y, Zhang R, Zhang K, Lin G, Xie J, Li J, Wang L. Using a novel microRNA delivery system to inhibit osteoclastogenesis. Int J Mol Sci. 2015;16(4):8337–50.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jason D. Turner
    • 1
  • Amy J. Naylor
    • 1
  • Christopher Buckley
    • 1
    • 2
  • Andrew Filer
    • 1
  • Paul-Peter Tak
    • 3
  1. 1.Rheumatology Research Group, Institute for Inflammation and AgeingCollege of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth HospitalBirminghamUK
  2. 2.The Kennedy Institute of RheumatologyUniversity of OxfordOxfordUK
  3. 3.Division of Clinical Immunology & RheumatologyAcademic Medical Center/University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations