Advertisement

Leukocyte-Stromal Interactions Within Lymph Nodes

  • Joshua D’Rozario
  • David Roberts
  • Muath Suliman
  • Konstantin Knoblich
  • Anne Fletcher
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1060)

Abstract

Lymph nodes play a crucial role in the formation and initiation of immune responses, allowing lymphocytes to efficiently scan for foreign antigens and serving as rendezvous points for leukocyte-antigen interactions. Here we describe the major stromal subsets found in lymph nodes, including fibroblastic reticular cells, lymphatic endothelial cells, blood endothelial cells, marginal reticular cells, follicular dendritic cells and other poorly defined subsets such as integrin alpha-7+ pericytes. We focus on biomedically relevant interactions with T cells, B cells and dendritic cells, describing pro-survival mechanisms of support for these cells, promotion of their migration and tolerance-inducing mechanisms that help keep the body free of autoimmune-mediated damage.

Keywords

Stromal cells Lymph nodes Fibroblasts FRCs Lymphoid fibroblasts Lymphatic endothelium Endothelial cells LECs Stromal Immunology Podoplanin Non-haematopoietic 

References

  1. 1.
    Buettner M, Bode U. Lymph node dissection–understanding the immunological function of lymph nodes. Clin Exp Immunol. 2012;169:205–12.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bazemore AW, Smucker DR. Lymphadenopathy and malignancy. Am Fam Physician. 2002;66:2103–10.PubMedGoogle Scholar
  3. 3.
    Girard J-P, Moussion C, Förster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol. 2012;12:762–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Willard-Mack CL. Normal structure, function, and histology of lymph nodes. Toxicol Pathol. 2006;34:409–24.PubMedCrossRefGoogle Scholar
  5. 5.
    Roozendaal R, Mebius RE. Stromal cell-immune cell interactions. Annu Rev Immunol. 2011;29:23–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Ahrendt M, Hammerschmidt SI, Pabst O, Pabst R, Bode U. Stromal cells confer lymph node-specific properties by shaping a unique microenvironment influencing local immune responses. J Immunol. 2008;181:1898–907.PubMedCrossRefGoogle Scholar
  7. 7.
    Tomura M, et al. Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci Rep. 2014;4:6030.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Bajenoff M, et al. Stromal cell networks regulate lymphocyte entry, migration and territoriality in lymph nodes. Immunity. 2006;25:989–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Mionnet C, et al. High endothelial venules as traffic control points maintaining lymphocyte population homeostasis in lymph nodes. Blood. 2011;118:6115–22.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc Natl Acad Sci U S A. 2000;97:12694–9.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Luther SA, et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol. 2002;169:424–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Westermann J, et al. Naive, effector, and memory T lymphocytes efficiently scan dendritic cells in vivo: contact frequency in T cell zones of secondary lymphoid organs does not depend on LFA-1 expression and facilitates survival of effector T cells. J Immunol. 2005;174:2517–24.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee J-W, et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol. 2007;8:181–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Link A, et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol. 2007;8:1255–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Magnusson FC, et al. Direct presentation of antigen by lymph node stromal cells protects against CD8 T-cell-mediated intestinal autoimmunity. Gastroenterology. 2008;134:1028–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Molenaar R, et al. Lymph node stromal cells support dendritic cell-induced gut-homing of T cells. J Immunol. 2009;183:6395–402.PubMedCrossRefGoogle Scholar
  17. 17.
    Cohen JN, et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med. 2010;207:681–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fletcher AL, et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J Exp Med. 2010;207:689–97.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Khan O, et al. Regulation of T cell priming by lymphoid stroma. PLoS One. 2011;6:e26138.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lukacs-Kornek V, et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol. 2011;12:1096–104.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Siegert S, et al. Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS One. 2011;6:e27618.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Malhotra D, et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol. 2012;13:499–510.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Baptista AP, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. Elife. 2014;3:e04433.Google Scholar
  24. 24.
    Cremasco V, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15:973–81.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Denton AE, Roberts EW, Linterman MA, Fearon DT. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139–44.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dubrot J, et al. Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4+ T cell tolerance. J Exp Med. 2014;211:1153–66.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fletcher AL, Acton SE, Knoblich K. Lymph node fibroblastic reticular cells in health and disease. Nat Rev Immunol. 2015;15:350–61.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Acton SE, et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature. 2014;514:498–502.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Astarita JL, et al. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat Immunol. 2015;16:75–84.PubMedCrossRefGoogle Scholar
  30. 30.
    Roozendaal R, et al. Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity. 2009;30:264–76.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lammermann T, et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 2008;453:51–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Sixt M, et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity. 2005;22:19–29.PubMedCrossRefGoogle Scholar
  33. 33.
    Gretz JE, Norbury CC, Anderson AO, Proudfoot AEI, Shaw S. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J Exp Med. 2000;192:1425–40.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Herzog BH, et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature. 2013;502:105–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yang C-Y, et al. Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes. Proc Natl Acad Sci U S A. 2014;111:E109–18.PubMedCrossRefGoogle Scholar
  36. 36.
    Katakai T, Hara T, Sugai M, Gonda H, Shimizu A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J Exp Med. 2004;200:783–95.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Mionnet C, et al. Identification of a new stromal cell type involved in the regulation of inflamed B cell follicles. PLoS Biol. 2013;11:e1001672.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fasnacht N, et al. Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. J Exp Med. 2014;211:2265–79.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Katakai T, et al. Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J Immunol. 2008;181:6189–200.PubMedCrossRefGoogle Scholar
  40. 40.
    Katakai T. Marginal reticular cells: a stromal subset directly descended from the lymphoid tissue organizer. Front Immunol. 2012;3:200.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jarjour M, et al. Fate mapping reveals origin and dynamics of lymph node follicular dendritic cells. J Exp Med. 2014;211:1109–22.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Heesters B a, Myers RC, Carroll MC. Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol. 2014;14:495–504.PubMedCrossRefGoogle Scholar
  43. 43.
    Ansel KM, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000;406:309–14.PubMedCrossRefGoogle Scholar
  44. 44.
    Asperti-Boursin F, Real E, Bismuth G, Trautmann A, Donnadieu E. CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3-kinase- independent manner. J Exp Med. 2007;204:1167–79.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907–16.PubMedCrossRefGoogle Scholar
  46. 46.
    Reynoso ED, et al. Intestinal tolerance is converted to autoimmune enteritis upon PD-1 ligand blockade. J Immunol. 2009;182:2102–12.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Anderson MS, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298:1395–401.PubMedCrossRefGoogle Scholar
  48. 48.
    Yip L, et al. Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes. Nat Immunol. 2009;10:1026–33.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Chai Q, et al. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity. 2013;38:1013–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Onder L, et al. IL-7-producing stromal cells are critical for lymph node remodeling. Blood. 2012;120:4675–83.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zeng M, et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest. 2011;121:998–1008.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zeng M, et al. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution. Blood. 2012;120:1856–67.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009;9:491–502.PubMedCrossRefGoogle Scholar
  54. 54.
    Sáez de Guinoa J, Barrio L, Mellado M, Carrasco YR. CXCL13/CXCR5 signaling enhances BCR-triggered B-cell activation by shaping cell dynamics. Blood. 2011;118:1560–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Suenaga F, et al. Loss of lymph node fibroblastic reticular cells and high endothelial cells is associated with humoral immunodeficiency in mouse graft-versus-host disease. J Immunol. 2014.  https://doi.org/10.4049/jimmunol.1401022.
  56. 56.
    Acton SE, et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity. 2012;37:276–89.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kumar V, et al. A dendritic-cell-stromal axis maintains immune responses in lymph nodes. Immunity. 2015;42:719–30.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Chyou S, et al. Coordinated regulation of lymph node vascular-stromal growth first by CD11c+ cells and then by T and B cells. J Immunol. 2011;187:5558–67.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Fletcher AL, et al. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Front Immunol. 2011;2:35.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Dougall WC, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13:2412–24.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kong YY, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–23.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Knoop KA, Butler BR, Kumar N, Newberry RD, Williams IR. Distinct developmental requirements for isolated lymphoid follicle formation in the small and large intestine: RANKL is essential only in the small intestine. Am J Pathol. 2011;179:1861–71.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Benezech C, et al. Ontogeny of stromal organizer cells during lymph node development. J Immunol. 2010;184:4521–30.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Cupedo T, et al. Presumptive lymph node organizers are differentially represented in developing mesenteric and peripheral nodes. J Immunol. 2004;173:2968–75.PubMedCrossRefGoogle Scholar
  65. 65.
    Luther SA, Ansel KM, Cyster JG. Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med. 2003;197:1191–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ohl L, et al. Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J Exp Med. 2003;197:1199–204.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Eberl G, et al. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol. 2004;5:64–73.PubMedCrossRefGoogle Scholar
  68. 68.
    Katakai T, et al. A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int Immunol. 2004;16:1133–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Krautler NJ, et al. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell. 2012;150:194–206.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Scandella E, et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol. 2008;9:667–75.PubMedCrossRefGoogle Scholar
  71. 71.
    Braun A, et al. Afferent lymph-derived T cells and DCs use different chemokine receptor CCR7-dependent routes for entry into the lymph node and intranodal migration. Nat Immunol. 2011;12:879–87.PubMedCrossRefGoogle Scholar
  72. 72.
    Ulvmar MH, et al. The atypical chemokine receptor CCRL1 shapes functional CCL21 gradients in lymph nodes. Nat Immunol. 2014;15:623–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Pham THM, et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med. 2010;207:17–27.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hirosue S, et al. Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. J Immunol. 2014;192(11):5002.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Cohen JN, et al. Tolerogenic properties of lymphatic endothelial cells are controlled by the lymph node microenvironment. PLoS One. 2014;9:e87740.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Nibbs RJB, Graham GJ. Immune regulation by atypical chemokine receptors. Nat Rev Immunol. 2013;13:815–29.PubMedCrossRefGoogle Scholar
  77. 77.
    Fletcher AL, et al. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Front Immunol. 2011;2:35.Google Scholar
  78. 78.
    Amatschek S, et al. Blood and lymphatic endothelial cell-specific differentiation programs are stringently controlled by the tissue environment. Blood. 2007;109:4777–85.PubMedCrossRefGoogle Scholar
  79. 79.
    Miller CN, et al. IL-7 production in murine lymphatic endothelial cells and induction in the setting of peripheral lymphopenia. Int Immunol. 2013;25:471–83.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Podgrabinska S, et al. Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1-dependent mechanism. J Immunol. 2009;183:1767–79.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Rouhani SJ, Eccles JD, Tewalt EF, Engelhard VH. Regulation of T-cell tolerance by lymphatic endothelial cells. J Clin Cell Immunol. 2014;5242.Google Scholar
  82. 82.
    Rouhani SJ, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Faveeuw C, Preece G, Ager A. Transendothelial migration of lymphocytes across high endothelial venules into lymph nodes is affected by metalloproteinases. Blood. 2001;98:688–95.PubMedCrossRefGoogle Scholar
  84. 84.
    Muller WA. The regulation of transendothelial migration: new knowledge and new questions. Cardiovasc Res. 2015;107:310–20.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Sage PT, Carman CV. Settings and mechanisms for trans-cellular diapedesis. Front Biosci (Landmark Ed). 2009;14:5066–83.CrossRefGoogle Scholar
  86. 86.
    Bistrup A, et al. Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J Cell Biol. 1999;145:899–910.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Warnock RA, Askari S, Butcher EC, von Andrian UH. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J Exp Med. 1998;187:205–16.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Stein JV, et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J Exp Med. 2000;191:61–76.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Förster R, et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell. 1999;99:23–33.PubMedCrossRefGoogle Scholar
  90. 90.
    Onder L, et al. Endothelial cell-specific lymphotoxin-β receptor signaling is critical for lymph node and high endothelial venule formation. J Exp Med. 2013;210:465–73.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lee M, et al. Transcriptional programs of lymphoid tissue capillary and high endothelium reveal control mechanisms for lymphocyte homing. Nat Immunol. 2014;15:982–95.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chyou S, et al. Fibroblast-type reticular stromal cells regulate the lymph node vasculature. J Immunol. 2008;181:3887–96.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Webster B, et al. Regulation of lymph node vascular growth by dendritic cells. J Exp Med. 2006;203:1903–13.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Benahmed F, et al. Multiple CD11c+ cells collaboratively express IL-1β to modulate stromal vascular endothelial growth factor and lymph node vascular-stromal growth. J Immunol. 2014;192:4153–63.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Bajénoff M, Germain RN. B-cell follicle development remodels the conduit system and allows soluble antigen delivery to follicular dendritic cells. Blood. 2009;114:4989–97.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wu Y, et al. IL-6 produced by immune complex-activated follicular dendritic cells promotes germinal center reactions, IgG responses and somatic hypermutation. Int Immunol. 2009;21:745–56.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wang X, et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med. 2011;208:2497–510.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Matsumoto M, et al. Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature. 1996;382:462–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Wang X, et al. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med. 2011;208:2497–510.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Suzuki K, Grigorova I, Phan TG, Kelly LM, Cyster JG. Visualizing B cell capture of cognate antigen from follicular dendritic cells. J Exp Med. 2009;206:1485–93.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Fischer MB, et al. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science. 1998;280:582–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Gommerman JL, et al. Manipulation of lymphoid microenvironments in nonhuman primates by an inhibitor of the lymphotoxin pathway. J Clin Invest. 2002;110:1359–69.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Gunn MD, et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt’s lymphoma receptor-1. Nature. 1998;391:799–803.PubMedCrossRefGoogle Scholar
  104. 104.
    Legler DF, et al. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med. 1998;187:655–60.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Yamamura H, Hirano N, Koyama H, Nishizawa Y, Takahashi K. Loss of smooth muscle calponin results in impaired blood vessel maturation in the tumor? Host microenvironment. Cancer Sci. 2007;98:757–63.PubMedCrossRefGoogle Scholar
  106. 106.
    Mayer U, et al. Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nat Genet. 1997;17:318–23.PubMedCrossRefGoogle Scholar
  107. 107.
    Nibbs RJB, Graham GJ. Immune regulation by atypical chemokine receptors. Nat Rev Immunol. 2013;13:815–29.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
  2. 2.Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK

Personalised recommendations