Advertisement

How Does Migraine Surgery Work?

  • Thomas Muehlberger
Chapter

Abstract

There is no simple straightforward answer as to the mechanism of migraine surgery. The explanations offered here are an approximation. The fundamental obstacle to a concise outline of how migraine surgery works is the incomplete knowledge of how migraine itself works. Instead, a new interpretation of existing evidence will be presented which, in combination with the assumed mechanisms, might offer a more useful approach to migraines compared with some theories presented in the preceding chapter. Certain terms will appear repeatedly throughout this chapter, for example, sensitization, trigeminal activation, referred pain, and convergence of afferent nerves. This is necessary because some of these notions are the connecting link between different aspects of the story. The concepts of “inside-out” versus “outside-in” concern the route of neural signal trafficking. The artificial antagonism between the view of an exclusively intracranial origin of migraine and the role of extracranial tissues as the site of the instigating stimuli for an attack will be described. The two concepts are not mutually exclusive but rather should be seen as complementing each other in an effort to arrive at a hypothesis about the mechanism of migraine surgery.

References

  1. 1.
    Shankland WE. The trigeminal nerve. Part II: The ophthalmic division. Cranio. 2001;19:8–12.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Yaprak M. The axon reflex. Neuroanatomy. 2008;7:17–9.Google Scholar
  3. 3.
    Messlinger K, Dostrovsky JO, Strassmann A. Anatomy and physiology of head pain. In: The headaches. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 95–109.Google Scholar
  4. 4.
    Lazarov NE. Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol. 2002;66:19–59.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Messlinger K. What is a nociceptor? (article in German). Schmerz. 1997;11:353–66.CrossRefPubMedGoogle Scholar
  6. 6.
    Messlinger K, Hanesch U, Baumgaertel M, Trost B, Schmidt RF. Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anat Embryol. 1993;188:219–37.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    de Gray LC, Matta BF. Acute and chronic pain following craniotomy: a review. Anaesthesia. 2005;60:693–704.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Penfield W, McNaughton F. Dural headache and innervation of the dura mater. Arch Neurol Psychiatr. 1940;40:43–75.CrossRefGoogle Scholar
  9. 9.
    Shevel E. Middle meningeal artery dilatation in migraine. Headache. 2009;49:1541–3.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Schoonman GG, van der Grond J, Kortmann C, van der Geest RJ, Terwindt GM, Ferrari MD. Migraine headache is not associated with cerebral or meningeal vasodilatation—a 3T magnetic resonance angiography study. Brain. 2008;131:2192–200.CrossRefPubMedGoogle Scholar
  11. 11.
    Vallery-Radot P, Hamburger J. Les Migraines (book in French). Paris: Masson et Cie; 1935. p. 31.Google Scholar
  12. 12.
    Arnold F. Der Kopftheil des vegetativen Nervensystems beim Menschen (Book in German). Karl Groos Heidelberg und Leipzig; 1831, p 87.Google Scholar
  13. 13.
    Lu X, Wu Z, Li Y. Innervation of the cerebral dura mater. Neuroradiol J. 2014;27:293–8.CrossRefGoogle Scholar
  14. 14.
    Feindel W, Penfield W, McNaughton F. The tentorial nerves and Iocalization of intracranial pain in man. Neurology. 1960;10:555–63.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ruskell GL, Simons T. Trigeminal nerve pathways to the cerebral arteries in monkeys. J Anat. 1987;155:23–37.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Muehlberger T, Wormald JC, Hachach-Haram N, Mosahebi A. Migraine: a look down the nose. J Plast Reconstr Aesthet Surg. 2017;70:914–21.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Messlinger K. Migraine: where and how does the pain originate? Exp Brain Res. 2009;196:179–93.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kemp WJ, Tubbs RS, Cohen-Gadol AA. The innervation of the cranial dura mater: neurosurgical case correlates and a review of the literature. World Neurosurg. 2012;78:505–10.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kimmell DL. Innervation of spinal dura mater and dura mater of the posterior cranial fossa. Neurology. 1961;2(9):800.CrossRefGoogle Scholar
  20. 20.
    McNaughton FL, Feindel WH. Innervation of intracranial structures: a reappraisal. In: Rose FC, editor. Physiological aspects of clinical neurology. Oxford, England: Blackwell Scientific; 1977. p. 279–93.Google Scholar
  21. 21.
    Ray BS, Wolff HG. Experimental studies on headache: pain-sensitive structures of the head and their significance in headache. Arch Surg. 1940;41:813–56.CrossRefGoogle Scholar
  22. 22.
    Wirth FP Jr, Van Buren JM. Referral of pain from dural stimulation in man. J Neurosurg. 1971;34:630–42.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Feinstein B, Langton JN, Jameson RM, Schiller F. Experiments on pain referred from deep somatic tissues. J Bone Joint Surg. 1954;36:981–97.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Sessle BJ, Hu JW, Amano N, Zhong G. Convergence of cutaneous, tooth pulp, visceral, neck and muscle afferents onto nociceptive and non-nociceptive neurones in trigeminal subnucleus caudalis (medullary dorsal horn) and its implications for referred pain. Pain. 1986;27:219–35.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hu JW, Sessle BJ, Raboisson P, Dailel R, Woda A. Stimulation of craniofacial muscle afferents induces prolonged facilitatory effects in trigeminal nociceptive brainstem neurones. Pain. 1992;48:53–60.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Bayliss WM. On the origin from the spinal cord of the vaso-dilator fibres of the hind-limb, and on the nature of these fibres. J Physiol. 1901;26:173–209.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bayliss WN. Further researches on antidromic nerve-impulses. J Physiol. 1902;28:276–99.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rothrock JF. “Outside-in” vs “inside-out”: revisiting migraine’s vascular hypothesis. Headache. 2008;48:1409–10.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    von Brevern M, Lempert T. Vestibular migraine. Handb Clin Neurol. 2016;137:301–16.CrossRefGoogle Scholar
  30. 30.
    Bigal ME, Lipton RB, Holland PR, Goadsby PJ. Obesity, migraine, and chronic migraine: possible mechanisms of interaction. Neurology. 2007;68:1851–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8:136–42.CrossRefPubMedGoogle Scholar
  32. 32.
    Dalkara T, Zervas NT, Moskowitz MA. From spreading depression to the trigeminovascular system. Neurol Sci. 2006;27:S86–90.CrossRefPubMedGoogle Scholar
  33. 33.
    Goadsby PJ, Akerman S. The trigeminovascular system does not require a peripheral sensory input to be activated—migraine is a central disorder. Focus on ‘Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system’. Cephalalgia. 2012;32:3–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Lambert GA. The lack of peripheral pathology in migraine headache. Headache. 2010;50:895–908.PubMedCrossRefGoogle Scholar
  35. 35.
    Levy D. Migraine pain and nociceptor activation—where do we stand? Headache. 2010;50:909–16.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Blau JN. Ponytail headache: a pure extracranial headache. Headache. 2004;44:411–3.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Olesen J. Problem areas in the International Classification of Headache Disorders, 3rd edition (beta). Cephalalgia. 2014;34:1193–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Gaul C, Sándor PS, Galli U, Palla S, Ettlin DA. Orofacial migraine. Cephalalgia. 2007;27:950–2.PubMedCrossRefGoogle Scholar
  39. 39.
    Obermann M, Mueller D, Yoon MS, Pageler L, Diener H, Katsarava Z. Migraine with isolated facial pain: a diagnostic challenge. Cephalalgia. 2007;27:1278–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Gaul C, Sándor PS, Ettlin DA. Neurovascular orofacial pain: authors’ reply. Cephalalgia. 2008;28:305.PubMedCrossRefGoogle Scholar
  41. 41.
    Drummond PD, Woodhouse A. Painful stimulation of the forehead increases photophobia in migraine sufferers. Cephalalgia. 1993;13:321–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Drummond PD. Photophobia and autonomic responses to facial pain in migraine. Brain. 1997;120:1857–64.PubMedCrossRefGoogle Scholar
  43. 43.
    Drummond PD, Granston A. Painful stimulation of the temple induces nausea, headache and extracranial vasodilation in migraine sufferers. Cephalalgia. 2005;25:16–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Bonuso S, Marano E, Di Stasio E, Sorge F, Tetto A, Testa N. The frontotemporal region plays a role in the genesis of migraine without aura. Headache. 1995;35:154–7.PubMedCrossRefGoogle Scholar
  45. 45.
    van Oosterhout WP, Haan J. Migraine after sneezing: pathophysiological considerations focused on the difference with coughing. Headache. 2013;53:1147–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Toyama M, Kudo C, Mukai C et al. Trigeminal nervous system sensitization by infraorbital nerve injury enhances responses in a migraine model. Cephalalgia. 2016 Nov 9, pii: 0333102416678387.Google Scholar
  47. 47.
    Filipović B, Matak I, Lacković Z. Dural neurogenic inflammation induced by neuropathic pain is specific to cranial region. J Neural Transm (Vienna). 2014;121:555–63.CrossRefGoogle Scholar
  48. 48.
    Guyuron B, Yohannes E, Miller R, et al. Electron microscopic and proteomic comparison of terminal branches of the trigeminal nerve in patients with and without migraine headaches. Plast Reconstr Surg. 2014;134:796e–805e.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Goadsby PJ, Lambert GA, Lance JW. Stimulation of the trigeminal ganglion increases flow in the extracerebral but not the cerebral circulation of the monkey. Brain Res. 1986;381:63–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Lambert GA, Bogduk N, Goadsby PJ, Duckworth JW, Lance JW. Decreased carotid arterial resistance in cats in response to trigeminal stimulation. J Neurosurg. 1984;61:307–15.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain in migraine: evidence for peripheral sensitisation. Lancet Neurol. 2009;8:679–90.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Luschka H. The nerves of the dura mater (book in German). H. Laupp: Tübingen, Germany; 1856.Google Scholar
  53. 53.
    Dowgjallo N. About the nerves of the dura mater in man and in some mammals (article in German). Z Ges Anat. 1929;89:453–66.CrossRefGoogle Scholar
  54. 54.
    Burstein R, Levy D, Jakubowski M, Woolf CJ. Peripheral and central sensitization related to headache. In: Olesen J, et al., editors. The headaches. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 119–26.Google Scholar
  55. 55.
    Kosaras B, Jakubowski M, Kainz V, Burstein R. Sensory innervation of the calvarial bones of the mouse. J Comp Neurol. 2009;515:331–48.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Knize DM. A study of the supraorbital nerve. Plast Reconstr Surg. 1995;96:564–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Schueler M, Messlinger K, Dux M, Neuhuber WL, De Col R. Extracranial projections of meningeal afferents and their impact on meningeal nociception and headache. Pain. 2013;154:1622–31.PubMedCrossRefGoogle Scholar
  58. 58.
    Schueler M, Neuhuber WL, De Col R, Messlinger K. Innervation of rat and human dura mater and pericranial tissues in the parieto-temporal region by meningeal afferents. Headache. 2014;54:996–1009.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhao J, Levy D. The sensory innervation of the calvarial periosteum is nociceptive and contributes to headache-like behavior. Pain. 2014;155:1392–400.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Perry CJ, Blake P, Buettner C, Papavassiliou E, Schain AJ, Bhasin MK, Burstein R. Upregulation of inflammatory gene transcripts in periosteum of chronic migraineurs: Implications for extracranial origin of headache. Ann Neurol. 2016;79:1000–13.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ashina S, Bendtsen L, Lyngberg AC, Lipton RB, Hajiyeva N, Jensen R. Prevalence of neck pain in migraine and tension-type headache: a population study. Cephalalgia. 2015;35:211–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Lampl C, Rudolph M, Deligianni CI, Mitsikostas DD. Neck pain in episodic migraine: premonitory symptom or part of the attack? J Headache Pain. 2015;16:566.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Calhoun AH, Ford S, Millen C, Finkel AG, Truong Y, Nie Y. The prevalence of neck pain in migraine. Headache. 2010;50:1273–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Viana M, Sances G, Terrazzino S, Sprenger T, Nappi G, Tassorelli C. When cervical pain is actually migraine: An observational study in 207 patients. Cephalalgia. 2016 Dec 7, pii: 0333102416683917.Google Scholar
  65. 65.
    Cushing H. Experiences with the cerebellar astrocytomas. A critical review of seventy-six cases. Surg Gynec Obstet. 1931;52:129–204.Google Scholar
  66. 66.
    Kunkle EC, Ray BS, Wolff HG. Studies on headache: the mechanisms and significance of the headache associated with brain tumor. Bull N Y Acad Med. 1942;18:400–22.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Kerr FWL. A mechanism to account for frontal headache in cases of posterior-fossa tumors. J Neurosurg. 1961;18:605–9.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kerr FWL, Olafsson RA. Trigeminal and cervical volleys: convergence on single units in the spinal grey at C1 and C2. Arch Neurol. 1961;5:17–8.CrossRefGoogle Scholar
  69. 69.
    Kerr FW. Central relationships of trigeminal and cervical primary afferents in the spinal cord and medulla. Brain Res. 1972;43:561–72.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Kerr FWL. Evidence for a peripheral etiology of trigeminal neuralgia. J Neurosurg. 1967;26:168–74.CrossRefGoogle Scholar
  71. 71.
    Goadsby PJ, Knight YE, Hoskin KL. Stimulation of the greater occipital nerve increases metabolic activity in the trigeminal nucleus caudalis and cervical dorsal horn of the cat. Pain. 1997;73:23–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Bartsch T, Goadsby PJ. Stimulation of the greater occipital nerve induces increases central excitability of dural afferent input. Brain. 2002;125:1496–509.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Bartsch T, Goadsby PJ. Increased responses in trigeminocervical nociceptive neurons to cervical input after stimulation of the dura mater. Brain. 2003;126:1801–13.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Le Doaré K, Akerman S, Holland PR, Lasalandra MP, Bergerot A, Classey JD, Knight YE, Goadsby PJ. Occipital afferent activation of second order neurons in the trigeminocervical complex in rat. Neurosci Lett. 2006;403:73–7.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Campbell DG, Parsons CM. Referred head pain and its concomitants. J Nerv Ment Dis. 1944;99:544–51.CrossRefGoogle Scholar
  76. 76.
    Bartsch T, Goadsby PJ. The trigeminocervical complex and migraine: current concepts and synthesis. Curr Pain Headache Rep. 2003;7:371–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Shevel E. Cervical muscles in the pathogenesis of migraine headache. J Headache Pain. 2004;5:12–4.PubMedCentralCrossRefGoogle Scholar
  78. 78.
    Serrao M, Perrotta A, Bartolo M, Fiermonte G, Pauri F, Rossi P, Parisi L, Pierelli F. Enhanced trigemino-cervical-spinal reflex recovery cycle in pain-free migraineurs. Headache. 2005;45(8):1061.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hu JW, Vernon H, Tatourian I. Changes in neck electromyography associated with meningeal noxious stimulation. J Manip Physiol Ther. 1995;18:577–81.Google Scholar
  80. 80.
    Selby G, Lance JW. Observations on 500 cases of migraine and allied vascular headache. J Neurol Neurosurg Psychiatry. 1960;23:23–32.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lous I, Olesen J. Evaluation of pericranial tenderness and oral function in patients with common migraine, muscle contraction headache and ‘combination headache’. Pain. 1982;12:385–93.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Tfelt-Hansen P, Lous I, Olesen J. Prevalence and significance of muscle tenderness during common migraine attacks. Headache. 1981;21:49–54.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Jensen K. Extracranial blood flow, pain and tenderness in migraine. Clinical and experimental studies. Acta Neurol Scand Suppl. 1993;147:1–27.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Jensen K, Tuxen C, Olesen J. Pericranial muscle tenderness and pressure-pain threshold in the temporal region during common migraine. Pain. 1988;35:65–70.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Ashina M, Bendtsen L, Jensen R, Sakai F, Olesen J. Muscle hardness in patients with chronic tension-type headache: relation to actual headache state. Pain. 1999;79:201–5.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Langemark M, Olesen J. Pericranial tenderness in tension headache. A blind, controlled study. Cephalalgia. 1987;7:249–55.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Berendtsen L, Treede RD. Sensitization of myofascial pain pathways in tension-type headaches. In: Olesen J, et al., editors. The headaches. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 637–41.Google Scholar
  88. 88.
    Jensen R, Bendtsen L, Olesen J. Muscular factors are of importance in tension-type headache. Headache. 1998;38:10–7.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Berendtsen L. Sensitization: its role in primary headache. Curr Opin Investig Drugs. 2002;3:449–53.Google Scholar
  90. 90.
    Ashina M, Stallknecht B, Bendtsen L, Pedersen JF, Galbo H, Dalgaard P, Olesen J. In vivo evidence of altered skeletal muscle blood flow in chronic tension-type headache. Brain. 2002;125:320–6.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Berendtsen L. Central sensitization in tension-type headache – possible pathophysiological mechanisms. Cephalalgia. 2000;20:486–508.CrossRefGoogle Scholar
  92. 92.
    Mørk H, Ashina M, Bendtsen L, Olesen J, Jensen R. Possible mechanisms of pain perception in patients with episodic tension-type headache. A new experimental model of myofascial pain. Cephalalgia. 2004;24:466–75.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
  94. 94.
    Schwartz DP, Robbins MS, Grosberg BM. Nummular headache update. Curr Pain Headache Rep. 2013;17:340.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Pareja JA, Pareja J, Yangüela J. Nummular headache, trochleitis, supraorbital neuralgia, and other epicranial headaches and neuralgias: the epicrania. J Headache Pain. 2003;4:125–31.PubMedCentralCrossRefGoogle Scholar
  96. 96.
  97. 97.
    Lu YN, Pan QQ, Pan JF, Wang L, Lu YY, Hu LH, Wang Y. Linear headache: clinical characteristics of eight new cases. Springerplus. 2016;5:347.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Cuadrado ML, Ordás CM, Sánchez-Lizcano M, et al. Epicrania fugax: 19 cases of an emerging headache. Headache. 2013;53:764–74.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Casas-Limón J, Cuadrado ML, Ruiz M, et al. Pain paroxysms with coronal radiation: case series and proposal of a new variant of epicrania fugax. Headache. 2016;56:1040–4.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Tychsen L, Tse DT, Ossoinig K, Anderson RL. Trochleitis with superior oblique myositis. Ophthalmology. 1984;91(9):1075.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Evans RW, Pareja JA. Trochleodynia and migraine. Headache. 2010;50:481–4.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Fernandez de Las Peñas C, Cuadrado ML, Gerwin RD, Pareja JA. Referred pain from the trochlear region in tension-type headache: a myofascial trigger point from the superior oblique muscle. Headache. 2005;45:731–7.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Yangüela J, Pareja JA, Lopez N, Sánchez Del Río M. Trochleitis and migraine headache. Neurology. 2002;58:802–5.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Fernández de Las Peñas C, Cuadrado ML, Gerwin RD, Pareja JA. Myofascial disorders in the trochlear region in unilateral migraine: a possible initiating or perpetuating factor. Clin J Pain. 2006;22:548–53.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Pareja JA, Sánchez del Río M. Primary trochlear headache and other trochlear painful disorders. Curr Pain Headache Rep. 2006;10:316–20.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Smith JH, Garrity JA, Boes CJ. Clinical features and long-term prognosis of trochlear headaches. Eur J Neurol. 2014;21:577–85.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Hulihan J. Ice cream headache. BMJ. 1997;314:1364.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Smith RO. Ice cream headache. In: Vinken PJ, Bruyn GW, editors. Handbook of clinical neurology, vol. 5. Chichester, UK: John Wiley; 1968. p. 188–91.Google Scholar
  109. 109.
    Selekler HM, Budak F. Idiopathic stabbing headache and experimental ice cream headache (short-lived headaches). Eur Neurol. 2004;51:6–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Harries M. Ice cream headache occurred during surfing in winter. BMJ. 1997;315:609.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Fuh JL, Wang SJ, Lu SR, Juang KD. Ice-cream headache—a large survey of 8359 adolescents. Cephalalgia. 2003;23:977–81.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Raskin NH, Knittle SC. Ice cream headache and orthostatic symptoms in patients with migraine. Headache. 1976;16:222–5.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Teixido M, Seymour P, Kung B, Lazar S, Sabra O. Otalgia associated with migraine. Otol Neurotol. 2011;32:322–5.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Watanabe K, Tubbs RS, Satoh S, Zomorodi AR, Liedtke W, Labidi M, Friedman AH, Fukushima T. Isolated deep ear canal pain: possible role of the auricular branch of the vagus nerve. Case illustrations with cadaveric correlation. World Neurosurg. 2016;96:293–301.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Lempert T, Neuhauser H. Epidemiology of vertigo, migraine and vestibular migraine. J Neurol. 2009;256:333–8.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Marano E, Marcelli V, Di Stasio E, Bonuso S, Vacca G, Manganelli F, Marciano E, Perretti A. Trigeminal stimulation elicits a peripheral vestibular imbalance in migraine patients. Headache. 2005;45:325–31.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Furman JM, Balaban CD. Vestibular migraine. Ann N Y Acad Sci. 2015;1343:90–6.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Vass Z, Shore SE, Nuttall AL, Miller JM. Direct evidence of trigeminal innervation of the cochlear blood vessels. Neuroscience. 1998;84:559–67.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Vass Z, Steyger PS, Hordichok AJ, Trune DR, Jancsó G, Nuttall AL. Capsaicin stimulation of the cochlea and electric stimulation of the trigeminal ganglion mediate vascular permeability in cochlear and vertebro-basilar arteries: a potential cause of inner ear dysfunction in headache. Neuroscience. 2001;103:189–201.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Vass Z, Dai CF, Steyger PS, Jancsó G, Trune DR, Nuttall AL. Co-localization of the vanilloid capsaicin receptor and substance P in sensory nerve fibres innervating cochlear and vertebro-basilar arteries. Neuroscience. 2004;124:919–27.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Burstein R, Blake P, Schain A, Perry C. Extracranial origin of headache. Curr Opin Neurol. 2017;30:263–71.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Sakas DE, Whitwell HL. Neurological episodes after minor head injury and trigeminovascular activation. Med Hypotheses. 1997;48:431–5.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Edvinsson L. Tracing neural connections to pain pathways with relevance to primary headaches. Cephalalgia. 2011;31:737–47.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Liu Y, Zhang M, Broman J, Edvinsson L. Central projections of sensory innervation of the rat superficial temporal artery. Brain Res. 2003;966:126–33.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Strassman AM, Raymond SA, Burstein R. Sensitization of meningeal sensory neurons and the origin of headache. Nature. 1996;384:560–4.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Strassman AM, Levy D. Response properties of dural nociceptors in relation to headache. J Neurophysiol. 2006;95:1298–306.CrossRefPubMedGoogle Scholar
  127. 127.
    Kemp WJ, Tubbs RS, Cohen-Gadol AA. The innervation of the scalp: A comprehensive review including anatomy, pathology, and neurosurgical correlates. Surg Neurol Int. 2011;2:178.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Sakas DE, Moskowitz MA, Wei EP, Kontos HA, Kant M, Ogilvy CS. Trigeminovascular fibres increase blood flow in cortical gray matter by axon reflex-like mechanisms during acute severe hypertension or seizures. Proc Natl Acad Sci. 1989;86:1401–5.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Selekler HM, Komsuoglu S. Unconventional treatment methods in turkish migraine sufferers. J Headache Pain. 2004;5:197–200.PubMedCentralCrossRefGoogle Scholar
  130. 130.
    Obermann M, Pleger B, de Greiff A, et al. Temporal summation of trigeminal pain in human anterior cingulate cortex. NeuroImage. 2009;46:193–200.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Stankewitz A, Aderjan D, Eippert F, May A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci. 2011;31:1937–43.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Gupta R, Nassiri N, Hazel A, Bathen M, Mozaffar T. Chronic nerve compression alters Schwann cell myelin architecture in a murine model. Muscle Nerve. 2012;45:231–41.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Charles A. Migraine: a brain state. Curr Opin Neurol. 2013;26:235–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Muehlberger
    • 1
  1. 1.Medsteps AGChamSwitzerland

Personalised recommendations