Advertisement

Cereals

  • Antonio Capurso
  • Gaetano Crepaldi
  • Cristiano Capurso
Chapter
Part of the Practical Issues in Geriatrics book series (PIG)

Abstract

Cereals have been the staple food in most population worldwide from time immemorial. In Mediterranean diet, cereals represent the main source of daily caloric intake. In a study conducted in eight Italian cities [1] where dietary habits of an elderly population (65–84 years) were investigated with a 7-day questionnaire, 47–50% of daily caloric intake resulted to be derived from cereals (bread and pasta), 30% from extra virgin olive oil, and 15% from proteins, mainly vegetal proteins (see Chap.  1, Fig.  1.3, this book).

References

  1. 1.
    Solfrizzi V, Panza F, Torres F, Mastroianni F, Del Parigi A, Venezia A, Capurso A. High monounsaturated fatty acids intake protects against age-related cognitive decline. Neurology. 1999;52:1563–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, Tonstad S, Vatten LJ, Riboli E, Norat T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. Br Med J. 2016;353:i2716.CrossRefGoogle Scholar
  3. 3.
    Whole grains and fiber. American Heart Association; 2016.Google Scholar
  4. 4.
    Health claim notification for whole grain foods. Bethesda, MD: Food and Drug Administration, US Department of Health and Human Services; 1999. Accessed 4 Dec 2016.Google Scholar
  5. 5.
    Stevenson L, Phillips F, O'Sullivan K, Walton J. Wheat bran: its composition and benefits to health, a European perspective. Int J Food Sci Nutr. 2012;63:1001–13.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Topping D. Cereal complex carbohydrates and their contribution to human health. J Cereal Sci. 2007;46:220–9.CrossRefGoogle Scholar
  7. 7.
    Chen HL, Haack VS, Janecky CW, Vollendorf NW, Marlett JA. Mechanisms by which wheat bran and oat bran increase stool weight in humans. Am J Clin Nutr. 1998;68:711–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, Gibson GR, Tuohy KM. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr. 2008;99:110–20.PubMedCrossRefGoogle Scholar
  9. 9.
    Laddomada B, Caretto S, Mita G. Wheat bran phenolic acids: bioavailability and stability in whole wheat-based foods. Molecules. 2015;20:15666–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Mateo Anson N, van den Berg R, Havenaar R, Bast A, Haenen GR. Ferulic acid from aleurone determines the antioxidant potency of wheat grain (Triticum aestivum L.). J Agric Food Chem. 2008;56:5589–94.PubMedCrossRefGoogle Scholar
  11. 11.
    Adom KK, Sorrells ME, Liu RH. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J Agric Food Chem. 2005;53:22972306.Google Scholar
  12. 12.
    Qu H, Madl RL, Takemoto DJ, Baybutt RC, Wang W. Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cells. J Nutr. 2005;135:598–602.PubMedCrossRefGoogle Scholar
  13. 13.
    Shan BE, Wang MX, Li RQ. Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/beta-catenin signaling pathway. Cancer Investig. 2009;27:604–12.CrossRefGoogle Scholar
  14. 14.
    Schober TJ, Bean SR, Kuhn M. Gluten proteins from spelt (Triticum aestivum ssp. spelta) cultivars: a rheological and size-exclusion high-performance liquid chromatography study. J Cereal Sci. 2006;44:161–73.CrossRefGoogle Scholar
  15. 15.
    CS1 maint: Uses authors parameter (link), Behall KM, Scholfiels DJ, Hallfrisch JG. Barley B. Glucan reduces plasma glucose and insulin responses compared with resistant starch in men. Nutr Res. 2006;26:644–650.Google Scholar
  16. 16.
    Lia A, Hallmans G, Sandberg AS, Sundberg B, Aman P, Andersson H. Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr. 1995;62:1245–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Whitehead A, Beck EJ, Tosh S, Wolever TM. Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;100:1413–21.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Nutrition for everyone. Centers for Disease Control and Prevention, US Department of Health and Human Services; 2014.Google Scholar
  19. 19.
    Juntunen KS, Laaksonen DE, Niskanen LK, Holst JJ, Savolainen KE, Liukkonen K-H, Poutanen KS, Mykkanen HM. Structural differences between rye and wheat bread but not total fiber content may explain the lower postprandial insulin response to rye bread. Am J Clin Nutr. 2003;78:957–64.PubMedCrossRefGoogle Scholar
  20. 20.
    Nodlund E, Katina K, Mykkänen H, Poutanen K. Distinct characteristics of rye and wheat breads impact on their in vitro gastric disintegration and in vivo glucose and insulin responses. Foods. 2016;5:24.CrossRefGoogle Scholar
  21. 21.
    Bhupathiraju SN, Tobias DK, Malik VS, Pan A, Hruby A, Manson JE, Willett WC, Hu FB. Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis. Am J Clin Nutr. 2014;100:218–32.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Raben A. Glycemic index and metabolic risks: how strong is the evidence? Am J Clin Nutr. 2014;100:1–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Mellen PB, Walsh TF, Herrington DM. Whole grain intake and cardiovascular disease: a meta-analysis. Nutr Metab Cardiovasc Dis. 2008;18:283–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Chanson-Rolle A, Meynier A, Aubin F, Lappi J, Poutanen K, Vinoy S, Braesco V. Systematic review and meta-analysis of human studies to support a quantitative recommendation for whole grain intake in relation to type 2 diabetes. PLoS One. 2015;10:e0131377.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002;76:5–56.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Eelderink C, Noort MW, Sozer N, Koehorst M, Holst JJ, Deacon CF, Rehfeld JF, Poutanen K, Vonk RJ, Oudhuis L, Priebe MG. The structure of wheat bread influences the postprandial metabolic response in healthy men. Food Funct. 2015;6:3236–328.PubMedCrossRefGoogle Scholar
  27. 27.
    Autio K, Parkkonen T, Fabritius M. Observing structural differences in wheat and rye breads. Cereal Foods World. 1997;42:702–5.Google Scholar
  28. 28.
    Lorenz K. Rye bread: fermentation processes ABD products in the United States. In: Kulp K, Lorenz K, editors. Handbook of dough fermentations. New York, NY: Marcel Dekker Inc; 2003. p. 159–91.Google Scholar
  29. 29.
    De Angelis M, Rizzello CG, Alfonsi G, Arnault P, Cappelle S, Di Cagno R, Gobbetti M. Use of sourdough lactobacilli and oat fibre to decrease the glycaemic index of white wheat bread. Br J Nutr. 2007;98:1196–205.PubMedCrossRefGoogle Scholar
  30. 30.
    Östman EM, Nilsson M, Liljeberg Elmståhl HGM, Molin G, Björck IME. On the effect of lactic acid on blood glucose and insulin responses to cereal products: mechanistic studies in healthy subjects and in Vitro. J Cereal Sci. 2002;36:339–46.CrossRefGoogle Scholar
  31. 31.
    Rosén LA, Östman EM, Shewry PR, Ward JL, Andersson AA, Piironen V, Lampi AM, Rakszegi M, Bedö Z, Björck IM. Postprandial glycemia, insulinemia, and satiety responses in healthy subjects after whole grain rye bread made from different rye varieties. 1. J Agric Food Chem. 2011;59:12139–48.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rosén LA, Blanco Silva LO, Andersson UK, Holm C, Östman EM, Björck IME. Endosperm and whole grain rye breads are characterized by low post-prandial insulin response and a beneficial blood glucose profile. Nutr J. 2009;8:42.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lappi J, Selinheimo E, Schwab U, Katina K, Lehtinen P, Mykkänen H, Kolehmainen M, Poutanen K. Sourdough fermentation of wholemeal wheat bread increases solubility of arabinoxylan and protein and decreases postprandial glucose and insulin responses. J Cereal Sci. 2010;51:152–8.CrossRefGoogle Scholar
  34. 34.
    Earle R. The body of the conquistador: food, race, and the colonial experience in Spanish America, 1492–1700. New York: Cambridge University Press; 2012.CrossRefGoogle Scholar
  35. 35.
    Staller JE, Carrasco M. Pre-Columbian Foodways: interdisciplinary approaches to food, culture, and markets in Ancient Mesoamerica, vol. 317. Berlin: Springer-Verlag; 2009.Google Scholar
  36. 36.
    Menotti A, Keys A, Anderson JT, Grande F. Prediction of serum-cholesterol responses of man to changes in fats in the diet. Lancet. 1957;273:959–66.Google Scholar
  37. 37.
    Keys A. Seven countries. A multivariate analysis of death and coronary heart disease. Cambridge: Harvard University Press; 1980.CrossRefGoogle Scholar
  38. 38.
    Keys A, Blackburn H, Kromhout D, Karvonen M, Nissinen A, Pekkanen J, Punsar S, Fidanza F, Giampaoli S, Seccareccia F, Buzina R, Mohacek I, Nedeljkovic S, Aravanis C, Dontas A, Toshima H, Lanti M. Comparison of multivariate predictive power of major risk factors for coronary heart diseases in different countries: results from eight nations of the seven countries study, 25-year follow-up. J Cardiovasc Risk. 1996;3:69–75.PubMedGoogle Scholar
  39. 39.
    Keys A, Anderson JT, Grande F. Serum cholesterol response to changes in the diet: IV. Particular saturated fatty acids in the diet. Metabolism. 1965;14:776–86.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Hegsted DM, McGandy RB, Myers ML, Stare FJ. Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr. 1965;17:281–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Vega GL, Groszek E, Wolf R, Grundy SM. Influence of polyunsaturated fats on composition of plasma lipoproteins and apolipoproteins. J Lipid Res. 1982;23:811–22.PubMedGoogle Scholar
  42. 42.
    Shepherd J, Packard CJ, Grundy SM, Yeshurun D, Gotto AM Jr, Taunton OD. Effects of saturated and polyunsaturated fat diets on the chemical composition and metabolism of low density lipoproteins in man. J Lipid Res. 1980;21:91–9.PubMedGoogle Scholar
  43. 43.
    Mensink RP, Katan MB. Effect of dietary fatty acids on serum lipids and lipoproteins. Arterioscler Thromb. 1992;12:911–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, Hennekens CH, Willett WC. Dietary fat intake and the risk of coronary heart disease in women. New Engl J Med. 1997;337:1491–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Willet WC. Dietary fats and coronary heart disease. J Intern Med. 2012;272:13–24.CrossRefGoogle Scholar
  46. 46.
    Jakobsen MU, O'Reilly EJ, Heitmann BL, Pereira MA, Bälter K, Fraser GE, Goldbourt U, Hallmans G, Knekt P, Liu S, Pietinen P, Spiegelman D, Stevens J, Virtamo J, Willett WC, Ascherio A. Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr. 2009;89:1425–32.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, Ringel A, Davis JM, Hibbeln JR. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the Sydney diet heart study and updated meta-analysis. Br Med J. 2013;346:e8707.CrossRefGoogle Scholar
  48. 48.
    Folcik VA, Cathcart MK. Predominance of esterified hydroperoxy-linoleic acid in human monocyte-oxidized LDL. J Lipid Res. 1994;35:1570–82.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Lenz ML, Hughes H, Mitchell JR, Via DP, Guyton JR, Taylor AA, et al. Lipid hydroperoxy and hydroxy derivatives in copper-catalyzed oxidation of low density lipoprotein. J Lipid Res. 1990;31:1043–50.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Shibata N, Toi S, Shibata T, Uchida K, Itabe H, Sawada T, et al. Immunohistochemical detection of 13(R)-hydroxyoctadecadienoic acid in atherosclerotic plaques of human carotid arteries using a novel specific antibody. Acta Histochem Cytochem. 2009;42:197–203.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Harland WA, Gilbert JD, Steel G, Brooks CJW. Lipids of human atheroma. 5. Occurrence of a new group of polar sterol esters in various stages of human atherosclerosis. Atherosclerosis. 1971;13:239.PubMedCrossRefGoogle Scholar
  52. 52.
    Carpenter KL, Taylor SE, van der Veen C, Williamson BK, Ballantine JA, Mitchinson MJ. Lipids and oxidised lipids in human atherosclerotic lesions at different stages of development. Biochim Biophys Acta. 1995;1256:141–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Kuhn H, Belkner J, Wiesner R, Schewe T, Lankin VZ, Tikhaze AK. Structure elucidation of oxygenated lipids in human atherosclerotic lesions. Eicosanoids. 1992;5:17–22.PubMedGoogle Scholar
  54. 54.
    Waddington EI, Croft KD, Sienuarine K, Latham B, Puddey IB. Fatty acid oxidation products in human atherosclerotic plaque: an analysis of clinical and histopathological correlates. Atherosclerosis. 2003;167:111–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Keys A, Aravanis C, Sdrin H. The diets of middle-aged men in two rural areas of Greece. In: Den Hartog C, Buzina K, Fidanza F, Keys A, Roine P, editors. Dietary studies and epidemiology of heart diseases. The Hague: Stichting tot Wetenschappelijke Voorlichting op Voedingsgebied; 1968. p. 57–68.Google Scholar
  56. 56.
    Alberti-Fidanza A, Fidanza F, Chiuchiù MP, Verducci G, Fruttini D. Dietary studies on two rural Italian population groups of the seven countries study. 3. Trend of food and nutrient intake from 1960 to 1991. Eur J Clin Nutr. 1999;53:854–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Simopoulos AP. The Mediterranean diets: what is so special about the diet of Greece? The scientific evidence. J Nutr. 2001;131:3065–73.CrossRefGoogle Scholar
  58. 58.
    Corsetti A, Settanni L. Lactobacilli in sourdough fermentation. Food Res Int. 2007;40:539–58.CrossRefGoogle Scholar
  59. 59.
    Björck I, Elmståhl HL. The glycaemic index: importance of dietary fibre and other food properties. Proc Nutr Soc. 2003;62:201–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Poutanen K, Flander L, Katina K. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol. 2009;26:693–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Liljeberg HG, Lönner CH, Björck I. Sourdough fermentation or addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans. J Nutr. 1995;125:1503–11.PubMedGoogle Scholar
  62. 62.
    Liljeberg H, Björck I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr. 1998;52:368–71.PubMedCrossRefGoogle Scholar
  63. 63.
    Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31:2281–3.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Breen C, Ryan M, Gibney MJ, Corrigan M, O’Shea D. Glycemic, insulinemic, and appetite responses of patients with type 2 diabetes to commonly consumed breads. Diabetes Educ. 2013;39:376–86.PubMedCrossRefGoogle Scholar
  65. 65.
    Jenkins DJ, Wesson V, Wolever TM, Jenkins AL, Kalmusky J, Guidici S, Csima A, Josse RG, Wong GS. Wholemeal versus wholegrain breads: proportion of whole or cracked grain and the glycaemic response. BMJ. 1988;297:958–60.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Holt SH, Miller JB. Particle size, satiety and the glycaemic response. Eur J Clin Nutr. 1994;48:496–502.PubMedGoogle Scholar
  67. 67.
    Liljeberg H, Granfeldt Y, Björck I. Metabolic responses to starch in bread containing intact kernels versus milled flour. Eur J Clin Nutr. 1992;46:561–75.PubMedGoogle Scholar
  68. 68.
    Scazzina F, Del Rio D, Pellegrini N, Brighenti F. Sourdough bread: starch digestibility and postprandial glycemic response. J Cereal Sci. 2009;49:419–21.CrossRefGoogle Scholar
  69. 69.
    Maioli M, Pes GM, Sanna M, Cherchi S, Dettori M, Manca E, Farris GA. Sourdough leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance. Acta Diabetol. 2008;45:91–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Lopez HW, Krespine V, Guy C, Messager A, Demigne C, Remesy C. Prolonged fermentation of whole wheat sourdough reduces phytate level and increases soluble magnesium. J Agric Food Chem. 2001;49:2657–62.PubMedCrossRefGoogle Scholar
  71. 71.
    Reale A, Konietzny U, Coppola R, Sorrentino E, Greiner R. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. J Agric Food Chem. 2007;55:2993–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Schlemmer U, Frølich W, Prieto RM, Grases F. Phytate in foods and significance for humans: food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res. 2009;53:330–75.CrossRefGoogle Scholar
  73. 73.
    Bohn L, Meyer AS, Rasmussen SK. Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B. 2008;9:165–91.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Katina K, Arendt E, Liukkonen K-H, Autio K, Flander L, Poutanen K. Potential of sourdough for healthier cereal products. Trends Food Sci Tech. 2005;16:104–12.CrossRefGoogle Scholar
  75. 75.
    Lennerz BS, Alsop DC, Holsen LM, Stern E, Rojas R, Ebbeling CB, Goldstein JM, Ludwig DS. Effects of dietary glycemic index on brain regions related to reward and craving in men. Am J Clin Nutr. 2013;98:641–7.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Page KA, Seo D, Belfort-DeAguiar R, Lacadie C, Dzuira J, Naik S, Amarnath S, Constable RT, Sherwin RS, Sinha R. Circulating glucose levels modulate neural control of desire for high-calorie foods in humans. J Clin Investig. 2011;121:4161–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Livesey G, Taylor R, Hulshof T, Howlett J. Glycemic response and health. A systematic review and meta-analysis: relations between dietary glycemic properties and health outcomes. Am J Clin Nutr. 2008;87:258–68.CrossRefGoogle Scholar
  78. 78.
    Lau C, Toft U, Tetens I, Richelsen B, Jørgensen T, Borch-Johnsen K, Glümer C. Association between dietary glycemic index, glycemic load, and body mass index in the Inter99 study: is underreporting a problem? Am J Clin Nutr. 2006;84:641–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Murakami K, McCaffrey TA, Livingstone MB. Associations of dietary glycaemic index and glycaemic load with food and nutrient intake and general and central obesity in British adults. Br J Nutr. 2013;9:1–11.Google Scholar
  80. 80.
    Rossi M, Bosetti C, Talamini R, Lagiou P, Negri E, Franceschi S, La Vecchia C. Glycemic index and glycemic load in relation to body mass index and waist to hip ratio. Eur J Nutr. 2010;49:459–64.PubMedCrossRefGoogle Scholar
  81. 81.
    Mendez MA, Covas MI, Marrugat J, Vila J, Schröder H. Glycemic load, glycemic index, and body mass index in Spanish adults. Am J Clin Nutr. 2009;89:316–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Ford ES, Liu S. Glycemic index and serum high-density lipoprotein cholesterol concentration among US adults. Arch Intern Med. 2001;161:572–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Denova-Gutiérrez E, Huitrón-Bravo G, Talavera JO, Castañón S, Gallegos-Carrillo K, Flores Y, Salmerón J. Dietary glycemic index, dietary glycemic load, blood lipids, and coronary heart disease. J Nutr Metab. 2010;2010:170680.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Levitan EB, Cook NR, Stampfer MJ, Ridker PM, Rexrode KM, Buring JE, Manson JE, Liu S. Dietary glycemic index, dietary glycemic load, blood lipids, and C-reactive protein. Metabolism. 2008;57:437–43.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Liu S, Manson JE, Stampfer MJ, Holmes MD, Hu FB, Hankinson SE, Willett WC. Dietary glycemic load assessed by food-frequency questionnaire in relation to plasma high-density lipoprotein cholesterol and fasting plasma triacylglycerols in postmenopausal women. Am J Clin Nutr. 2001;73:560–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Amano Y, Kawakubo K, Lee JS, Tang AC, Sugiyama M, Mori K. Correlation between dietary glycemic index and cardiovascular disease risk factors among Japanese women. Eur J Clin Nutr. 2004;58:1472–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Ludwig DS. The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA. 2002;287:2414–23.PubMedCrossRefGoogle Scholar
  88. 88.
    Livesey G, Taylor R, Livesey H, Liu S. Is there a dose-response relation of dietary glycemic load to risk of type 2 diabetes? Meta-analysis of prospective cohort studies. Am J Clin Nutr. 2013;97:584–96.PubMedCrossRefGoogle Scholar
  89. 89.
    Willett W, Manson J, Liu S. Glycemic index, glycemic load, and risk of type 2 diabetes. Am J Clin Nutr. 2002;76:274–80.CrossRefGoogle Scholar
  90. 90.
    Capurso C, Capurso A. From excess adiposity to insulin resistance: the role of free fatty acids. Vasc Pharmacol. 2012;57:91–7.CrossRefGoogle Scholar
  91. 91.
    Dong JY, Zhang YH, Wang P, Qin LQ. Meta-analysis of dietary glycemic load and glycemic index in relation to risk of coronary heart disease. Am J Cardiol. 2012;109:1608–13.PubMedCrossRefGoogle Scholar
  92. 92.
    Fan J, Song Y, Wang Y, Hui R, Zhang W. Dietary glycemic index, glycemic load, and risk of coronary heart disease, stroke, and stroke mortality: a systematic review with meta-analysis. PLoS One. 2012;7:e52182.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Mirrahimi A, de Souza RJ, Chiavaroli L, Sievenpiper JL, Beyene J, Hanley AJ, Augustin LS, Kendall CW, Jenkins DJ. Associations of glycemic index and load with coronary heart disease events: a systematic review and meta-analysis of prospective cohorts. J Am Heart Assoc. 2012;1:e000752.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Mirrahimi A, Chiavaroli L, Srichaikul K, Augustin LS, Sievenpiper JL, Kendall CW, Jenkins DJ. The role of glycemic index and glycemic load in cardiovascular disease and its risk factors: a review of the recent literature. Curr Atheroscler Rep. 2014;16:1–10.CrossRefGoogle Scholar
  95. 95.
    Sieri S, Krogh V, Berrino F, Evangelista A, Agnoli C, Brighenti F, Pellegrini N, Palli D, Masala G, Sacerdote C, et al. Dietary glycemic load and index and risk of coronary heart disease in a large Italian cohort: the EPICOR study. Arch Intern Med. 2010;170:640–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Knopp RH, Paramsothy P, Retzlaff BM, Fish B, Walden C, Dowdy A, Tsunehara C, Aikawa K, Cheung MC. Gender differences in lipoprotein metabolism and dietary response: basis in hormonal differences and implications for cardiovascular disease. Curr Atheroscler Rep. 2005;7:472–9.PubMedCrossRefGoogle Scholar
  97. 97.
    The Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.PubMedCentralCrossRefPubMedGoogle Scholar
  98. 98.
    Hu Y, Block G, Norkus EP, Morrow JD, Dietrich M, Hudes M. Relations of glycemic index and glycemic load with plasma oxidative stress markers. Am J Clin Nutr. 2006;84:70–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Arcidiacono B, Iiritano S, Nocera A, Possidente K, Nevolo MT, Ventura V, Foti D, Chiefari E, Brunetti A. Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp Diabetes Res. 2012;2012:789174.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Gnagnarella P, Gandini S, la Vecchia C, Maisonneuve P. Glycemic index, glycemic load, and cancer risk: a meta-analysis. Am J Clin Nutr. 2008;87:1793–801.PubMedCrossRefGoogle Scholar
  101. 101.
    Mulholland HG, Murray LJ, Cardwell CR, Cantwell MM. Dietary glycaemic index, glycaemic load and endometrial and ovarian cancer risk: a systematic review and meta-analysis. Br J Cancer. 2008;99:434–41.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Mulholland HG, Murray LJ, Cardwell CR, Cantwell MM. Glycemic index, glycemic load, and risk of digestive tract neoplasms: a systematic review and meta-analysis. Am J Clin Nutr. 2009;89:568–76.PubMedCrossRefGoogle Scholar
  103. 103.
    Aune D, Chan DS, Greenwood DC, Vieira AR, Rosenblatt DA, Vieira R, Norat T. Dietary fiber and breast cancer risk: a systematic review and meta-analysis of prospective studies. Ann Oncol. 2012;23:1394–402.PubMedCrossRefGoogle Scholar
  104. 104.
    Dong JY, Qin LQ. Dietary glycemic index, glycemic load, and risk of breast cancer: meta-analysis of prospective cohort studies. Breast Cancer Res Treat. 2011;126:287–94.PubMedCrossRefGoogle Scholar
  105. 105.
    Hu J, la Vecchia C, Augustin LS, Negri E, de Groh M, Morrison H, Mery L, Canadian Cancer Registries Epidemiology Research Group. Glycemic index, glycemic load and cancer risk. Ann Oncol. 2013;24:245–51.PubMedCrossRefGoogle Scholar
  106. 106.
    Pereira MA, O’Reilly E, Augustsson K, Fraser GE, Goldbourt U, Heitmann BL, Hallmans G, Knekt P, Liu S, Pietinen P, Spiegelman D, Stevens J, Virtamo J, Willett WC, Ascherio A. Dietary fiber and risk of coronary heart disease: a pooled analysis of cohort studies. Arch Intern Med. 2004;164:370–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med. 2007;167:956–65.PubMedCrossRefGoogle Scholar
  108. 108.
    Koh-Banerjee P, Franz M, Sampson L, Liu S, Jacobs DR Jr, Spiegelman D, Willett W, Rimm E. Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. Am J Clin Nutr. 2004;80:1237–45.PubMedCrossRefGoogle Scholar
  109. 109.
    Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, Norat T. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. Br Med J. 2011;343:d6617.CrossRefGoogle Scholar
  110. 110.
    Esposito K, Nappo F, Giugliano F, di Palo C, Ciotola M, Barbieri M, Paolisso G, Giugliano D. Meal modulation of circulating interleukin 18 and adiponectin concentrations in healthy subjects and in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2003;78:1135–40.PubMedCrossRefGoogle Scholar
  111. 111.
    Chuang SC, Vermeulen R, Sharabiani MT, Sacerdote C, Fatemeh SH, Berrino F, Krogh V, Palli D, Panico S, Tumino R, et al. The intake of grain fibers modulates cytokine levels in blood. Biomarkers. 2011;16:504–10.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Weickert MO, Möhlig M, Schöfl C, Arafat AM, Otto B, Viehoff H, Koebnick C, Kohl A, Spranger J, Pfeiffer AF. Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care. 2006;29:775–80.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Gil A, Ortega RM, Maldonado J. Wholegrain cereals and bread: a duet of the Mediterranean diet for the prevention of chronic diseases. Public Health Nutr. 2011;14:2316–22.PubMedCrossRefGoogle Scholar
  114. 114.
    Aune D, Norat T, Romundstad P, Vatten LJ. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol. 2013;28:845–58.PubMedCrossRefGoogle Scholar
  115. 115.
    Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev. 2010;23:65–134.PubMedCrossRefGoogle Scholar
  116. 116.
    Slavin J. Fiber and prebiotics: mechanisms and health benefits. Forum Nutr. 2013;5:1417–35.Google Scholar
  117. 117.
    Nakamura YK, Omaye ST. Metabolic diseases and pro- and prebiotics: mechanistic insights. Nutr Metab. 2012;9:60.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Capurso
    • 1
  • Gaetano Crepaldi
    • 2
  • Cristiano Capurso
    • 3
  1. 1.Department of Internal MedicineSchool of Medicine, University of BariBariItaly
  2. 2.Department of Biomedical ScienceCNR Neuroscience InstitutePadovaItaly
  3. 3.Department of Medical and Surgical SciencesSchool of Medicine, University of FoggiaFoggiaItaly

Personalised recommendations