Advertisement

Extra-virgin Olive Oil, the Mediterranean Diet, and Neurodegenerative Diseases

  • Antonio Capurso
  • Gaetano Crepaldi
  • Cristiano Capurso
Chapter
Part of the Practical Issues in Geriatrics book series (PIG)

Abstract

Among its numerous beneficial effects, Mediterranean diet has been also demonstrated to reduce the risk of neurodegenerative diseases.

References

  1. 1.
    Dinu M, Pagliai G, Casini A, Sofi F. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr. 2017;72:30.  https://doi.org/10.1038/ejcn.2017.58.CrossRefPubMedGoogle Scholar
  2. 2.
    Solfrizzi V, Panza F, Torres F, Mastroianni F, Del Parigi A, Venezia A, Capurso A. High monounsaturated fatty acids intake protects against age-related cognitive decline. Neurology. 1999;52:1563–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Panza F, Solfrizzi V, Colacicco AM, D'Introno A, Capurso C, Torres F, Del Parigi A, Capurso S, Capurso A. Mediterranean diet and cognitive decline. Public Health Nutr. 2004;7:959–63.CrossRefPubMedGoogle Scholar
  4. 4.
    Scarmeas N, Stern Y, Mayeux R, Manly JJ, Schupf N, Luchsinger JA. Mediterranean diet and mild cognitive impairment. Arch Neurol. 2009;66:216–25.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Solfrizzi V, Frisardi V, Seripa D, Logroscino G, Imbimbo BP, D'Onofrio G, Addante F, Sancarlo D, Cascavilla L, Pilotto A, Panza F. Mediterranean diet in predementia and dementia syndromes. Curr Alzheimer Res. 2011;8:520–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Singh B, Parsaik AK, Mielke MM, Erwin PJ, Knopman DS, Petersen RC, Roberts RO. Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014;39:271–82.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hanninen T, Hallikainen M, Koivisto K, Helkala EL, Reinikainen KJ, Soininen H, et al. A follow-up study of age-associated memory impairment: neuropsychological predictors of dementia. J Am Geriatr Soc. 1995;43:1007–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Brayne C, Calloway P. Normal ageing, impaired cognitive function and senile dementia of Alzheimer type: a continuum? Lancet. 1988;1:1265–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Nolan KA, Blass JP. Preventing cognitive decline. Clin Geriatr Med. 1992;8:19–34.PubMedCrossRefGoogle Scholar
  10. 10.
    Fillit HM. The clinical significance of normal cognitive decline in late life. In: Fillit HM, Butler RN, editors. Cognitive decline. Strategies for prevention. Oxford: Oxford University Press; 1997. p. 1–7.Google Scholar
  11. 11.
    Breteler MM, Claus JJ, Grobbee DE, Hofman A. Cardiovascular disease and distribution of cognitive function in elderly people: the Rotterdam study. Br Med J. 1994;308:1604–8.CrossRefGoogle Scholar
  12. 12.
    Launer LJ, Masaki K, Petrovich H, Foley D, Havlik RJ. The association between midlife blood pressure levels and latelife cognitive function. J Am Med Assoc. 1995;274:1846–51.CrossRefGoogle Scholar
  13. 13.
    Richardson JT. Cognitive function in diabetes mellitus. Neurosci Biobehav Rev. 1990;14:385–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Blazer D, Burchett B, Service C, George LK. The association of age and depression among the elderly: an epidemiologic exploration. J Gerontol. 1991;46:M210–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Rogers RL, Meyer JS, Mortal KF. After reaching retirement age, physical activity sustains cerebral perfusion and cognition. J Am Geriatr Soc. 1990;38:123–8.CrossRefPubMedGoogle Scholar
  16. 16.
    White LR, Foley DJ, Havlik RJ. Lifestyle risk factors for cognitive impairment. In: Fillit HM, Butler RN, editors. Cognitive decline. Strategies for prevention. Oxford: Oxford University Press; 1997. p. 23–32.Google Scholar
  17. 17.
    Sahyoun NR, Otradovec CL, Hartz SC, Jacob RA, Peters H, Russell RM, et al. Dietary intakes and biochemical indicators of nutritional status in an elderly, institutionalized population. Am J Clin Nutr. 1988;47:524–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Goodwin J, Goodwin J, Garry P. Association between nutritional status and cognitive functioning in a healthy elderly population. JAMA. 1983;249(21):2917.CrossRefPubMedGoogle Scholar
  19. 19.
    Capurso A, Solfrizzi V, Panza F, Tores F, Mastroianni F, Grassi A, Del Parigi A, Capurso C, Pirozzi MR, Centonze S, Misciagna G. Dietary patterns and cognitive functions in elderly subjects. Aging Clin Exp Res. 1997;9(Suppl. 4):45–7.CrossRefGoogle Scholar
  20. 20.
    Solfrizzi V, Panza F, Capurso A. The role of diet in cognitive decline. J Neural Transm. 2003;110:95–110.PubMedGoogle Scholar
  21. 21.
    Jones CB, Arai T, Rapoport SI. Evidence for the involvement of docosahexanoic acid in cholinergic stimulated signal transduction at the synapse. Neurochem Res. 1997;22:663–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Yehuda S, Rabinovitz S, Mostofsky DI. Essential fatty acids are mediators of brain biochemistry and cognitive functions. J Neurosci Res. 1999;56:565–70.CrossRefPubMedGoogle Scholar
  23. 23.
    Lopez GH, Ilincheta de Boschero MG, Castagnet PI, Giusto NM. Age-associated changes in the content and fatty acids composition of brain glycerophospholipids. Comparative Biochemistry and Physiology. Part B. Biochem Mol Biol. 1995;112:331–43.CrossRefGoogle Scholar
  24. 24.
    Marzo I, Martinez-Lorenzo MJ, Anel A, Desportes P, Alava MA, Naval J, et al. Biosynthesis of unsaturated fatty acids in the main cell lineages of human leukemia and lymphoma. Biochim Biophys Acta. 1995;1257:140–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Kalmijn S, Feskens EJ, Launer LJ, Kromhout D. Polyunsaturated fatty acids, antioxidants, and cognitive functions in very old men. Am J Epidemiol. 1997;145:33–41.CrossRefPubMedGoogle Scholar
  26. 26.
    Solfrizzi V, Panza F, Colacicco AM, D'Introno A, Capurso C, Torres F, Grigoletto F, Maggi S, Del Parigi A, Reiman EM, Caselli RJ, Scafato E, Farchi G, Capurso A, Italian Longitudinal Study on Aging Working Group. Vascular risk factors, incidence of MCI, and rates of progression to dementia. Neurology. 2004;63:1882–91.CrossRefPubMedGoogle Scholar
  27. 27.
    Maioli F, Coveri M, Pagni P, Chiandetti C, Marchetti C, Ciarrocchi R, Ruggero C, Nativio V, Onesti A, D'Anastasio C, Pedone V. Conversion of mild cognitive impairment to dementia in elderly subjects: a preliminary study in a memory and cognitive disorder unit. Arch Gerontol Geriatr. 2007;44(Suppl 1):233–41.CrossRefPubMedGoogle Scholar
  28. 28.
    Rozzini L, Chilovi BV, Conti M, Bertoletti E, Delrio I, Trabucchi M, Padovani A. Conversion of amnestic mild cognitive impairment to dementia of Alzheimer type is independent to memory deterioration. Int J Geriatr Psychiatry. 2007;22:1217–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Fung TT, McCullough ML, Newby PK, Manson JE, Meigs JB, Rifai N, Willett WC, Hu FB. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr. 2005;82:163–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Esposito K, Giugliano F, Di Palo C, Giugliano G, Marfella R, D’Andrea F, D’Armiento M, Giugliano D. Effect of lifestyle changes on erectile dysfunction in obese men: a randomized controlled trial. JAMA. 2004;291:2978–84.CrossRefPubMedGoogle Scholar
  31. 31.
    Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J Am Coll Cardiol. 2004;44:152–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Steele M, Stuchbury G, Munch G. The molecular basis of the prevention of Alzheimer’s disease through healthy nutrition. Exp Gerontol. 2007;42:28–36.CrossRefPubMedGoogle Scholar
  33. 33.
    Cummings JL. Alzheimer’s disease. N Engl J Med. 2004;351:56–67.CrossRefPubMedGoogle Scholar
  34. 34.
    Frisardi V, Panza F, Seripa D, Imbimbo BP, Vendemiale G, Pilotto A, Solfrizzi V. Nutraceutical properties of Mediterranean diet and cognitive decline: possible underlying mechanisms. J Alzheimers Dis. 2010;22:715–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Roberts RO, Geda YE, Cerhan JR, Knopman DS, Cha RH, Christianson TJ, Pankratz VS, Ivnik RJ, Boeve BF, O’Connor HM, Petersen RC. Vegetables, unsaturated fats, moderate alcohol intake, and mild cognitive impairment. Dement Geriatr Cogn Disord. 2010;29:413–23.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Panza F, Capurso C, D’Introno A, Colacicco AM, Del Parigi A, Gagliardi G, Breglia G, Capurso A, Solfrizzi V. Mediterranean diet, mild cognitive impairment, and Alzheimer’s disease. Exp Gerontol. 2007;42:6–7. author reply 8–9CrossRefPubMedGoogle Scholar
  37. 37.
    Eskelinen MH, Ngandu T, Helkala EL, Tuomilehto J, Nissinen A, Soininen H, Kivipelto M. Fat intake at midlife and cognitive impairment later in life: a population-based CAIDE study. Int J Geriatr Psychiatry. 2008;23:741–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Singh RB, Dubnov G, Niaz MA, Ghosh S, Singh R, Rastogi SS, Manor O, Pella D, Berry EM. Effect of an indo-Mediterranean diet on progression of coronary artery disease in high risk patients (indo-Mediterranean diet heart study): a randomised single-blind trial. Lancet. 2002;360:1455–61.CrossRefPubMedGoogle Scholar
  39. 39.
    Psaltopoulou T, Kyrozis A, Stathopoulos P, Trichopoulos D, Vassilopoulos D, Trichopoulou A. Diet, physical activity and cognitive impairment among elders: the EPIC-Greece cohort (European prospective investigation into cancer and nutrition). Public Health Nutr. 2008;11:1054–62.CrossRefPubMedGoogle Scholar
  40. 40.
    Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, D’Armiento M, D’Andrea F, Giugliano D. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292:1440–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Jula A, Marniemi J, Huupponen R, Virtanen A, Rastas M, Ronnemaa T. Effects of diet and simvastatin on serum lipids, insulin, and antioxidants in hypercholesterolemic men: a randomized controlled trial. JAMA. 2002;287:598–605.CrossRefPubMedGoogle Scholar
  42. 42.
    Hendrie HC, Osuntokun BO, Hall KS, Ogunniyi AO, Hui SL, Unverzagt FW, Gureje O, Rodenberg CA, Baiyewu O, Musick BS. Prevalence of Alzheimer’s disease and dementia in two communities: Nigerian Africans and African Americans. Am J Psychiatr. 1995;152:1485–92.CrossRefPubMedGoogle Scholar
  43. 43.
    Graves AB, Larson EB, Edland SD, Bowen JD, McCormick WC, McCurry SM, Rice MM, Wenzlow A, Uomoto JM. Prevalence of dementia and its subtypes in the Japanese American population of King County, Washington state. The kame project. Am J Epidemiol. 1996;144:760–71.CrossRefPubMedGoogle Scholar
  44. 44.
    White L, Petrovitch H, Ross GW, Masaki KH, Abbott RD, Teng EL, Rodriguez BL, Blanchette PL, Havlik RJ, Wergowske G, Chiu D, Foley DJ, Murdaugh C, Curb JD. Prevalence of dementia in older Japanese American men in Hawaii: the Honolulu–Asia aging study. J Am Med Assoc. 1996;276:955–60.CrossRefGoogle Scholar
  45. 45.
    Harman D. Free radical theory of aging: Alzheimer’s disease pathogenesis. Age. 1995;18:97–119.CrossRefGoogle Scholar
  46. 46.
    Smith MA, Sayre L, Perry G. Morphological aspects of oxidative damage in Alzheimer’s disease. In: Beal MF, Howell H, Bodis-Wollner I, editors. Mitochondria and free radicals in neurodegenerative diseases. New York: WileyLiss Inc.; 1997. p. 50.Google Scholar
  47. 47.
    Hulette C, Nochlin D, McKeel D, Morris JC, Mirra SS, Sumi SM, Heyman A. Clinical–neuropathologic findings in multi-infarct dementia: a report of six autopsied cases. Neurology. 1997;48:668–72.CrossRefPubMedGoogle Scholar
  48. 48.
    Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer’s disease. The Nun study. J Am Med Assoc. 1977;277:811–7.Google Scholar
  49. 49.
    Grant B. Dietary links to Alzheimer’s disease. Alzheimer’s Dis Rev. 1997;2:42–55.Google Scholar
  50. 50.
    Grant B. Dietary links to Alzheimer’s disease: 1999 update. J Alzheimers Dis. 1999;1:197–201.CrossRefPubMedGoogle Scholar
  51. 51.
    Kalmijn S, Lauher LJ, Ott A, Witteman JC, Hofman A, Breteler MM. Dietary fat intake and the risk of incident dementia in the Rotterdam study. Ann Neurol. 1997;42:776–82.CrossRefPubMedGoogle Scholar
  52. 52.
    Orgogozo JM, Dartigues JF, Lafont S, Letenneur L, Commenges D, Salamon R. Wine consumption and the elderly: a prospective community study in the Bordeaux area. Rev Neurol. 1997;153:185–92.PubMedGoogle Scholar
  53. 53.
    Dorozynski A. Wine may prevent dementia. Br Med J. 1997;314:997.Google Scholar
  54. 54.
    Truelsen T, Thudium D, Gronbaek M. Amount and type of alcohol and risk of dementia: the Copenhagen City heart study. Neurology. 2002;59:1313–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Solfrizzi V, D'Introno A, Colacicco AM, Capurso C, Del Parigi A, Baldassarre G, Scapicchio P, Scafato E, Amodio M, Capurso A, Panza F, Italian Longitudinal Study on Aging Working Group. Alcohol consumption, mild cognitive impairment, and progression to dementia. Neurology. 2007;68:1790–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Inanami O, Watanabe Y, Syuto B, Nakano M, Tsuji M, Kuwabara M. Oral administration of (−) catechin protects against ischemia-reperfusion-induced neuronal death in the gerbil. Free Radic Res. 1998;29:359–65.CrossRefPubMedGoogle Scholar
  57. 57.
    Shutenko Z, Henry Y, Pinard E, Seylaz J, Potier P, Berthet F, Girard P, Sercombe R. Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem Pharmacol. 1999;57:199–208.CrossRefPubMedGoogle Scholar
  58. 58.
    Bastianetto S, Zheng WH, Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol. 2000;131:711–20.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Virgili M, Contestabile A. Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neurosci Lett. 2000;281:123–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Choi YT, Jung CH, Lee SR, Bae JH, Baek WK, Suh MH, Park J, Park CW, Suh SI. The green tea polyphenol (−)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci. 2001;70:603–14.CrossRefPubMedGoogle Scholar
  61. 61.
    Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (−)-epigallocatechin-3-gallate prevents Nmethyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78:1073–82.CrossRefPubMedGoogle Scholar
  62. 62.
    Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem. 2003;87:172–81.CrossRefPubMedGoogle Scholar
  63. 63.
    Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008;337:a1344.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Luceri C, Bigagli E, Pitozzi V, Giovannelli LA. Nutrigenomics approach for the study of anti-aging interventions: olive oil phenols and the modulation of gene and microRNA expression profiles in mouse brain. Eur J Nutr. 2017;56:865–77.CrossRefPubMedGoogle Scholar
  65. 65.
    Angel-Morales G, Noratto G, Mertens-Talcott S. Red wine polyphenolics reduce the expression of inflammation markers in human colon-derived CCD-18Co myofibroblast cells: potential role of microRNA-126. Food Funct. 2012;3:745–52.CrossRefPubMedGoogle Scholar
  66. 66.
    Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003;348:1356–64.CrossRefPubMedGoogle Scholar
  67. 67.
    Tanner CM. Advances in environmental epidemiology. Mov Disord. 2010;25(Suppl 1):S58–62.CrossRefPubMedGoogle Scholar
  68. 68.
    Tanner CM, Ottman R, Goldman SM, et al. Parkinson disease in twins: an etiologic study. JAMA. 1999;281:341–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Chen H, Zhang SM, Hernan MA, Willett WC, Ascherio A. Diet and Parkinson’s disease: a potential role of dairy products in men. Ann Neurol. 2002;52:793–801.CrossRefPubMedGoogle Scholar
  70. 70.
    Chen H, O'Reilly E, McCullough ML, et al. Consumption of dairy products and risk of Parkinson’s disease. Am J Epidemiol. 2007;165:998–1006.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Park M, Ross GW, Petrovitch H, et al. Consumption of milk and calcium in midlife and the future risk of Parkinson disease. Neurology. 2005;64:1047–51.CrossRefPubMedGoogle Scholar
  72. 72.
    Gao X, Chen H, Fung TT, Logroscino G, Schwarzschild MA, Hu FB, Ascherio A. Prospective study of dietary pattern and risk of Parkinson disease. Am J Clin Nutr. 2007;86:1486–94.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Alcalay RN, Gu Y, Mejia-Santana H, Cote L, Marder KS, Scarmeas N. The association between Mediterranean diet adherence and Parkinson’s disease. Mov Disord. 2012;27:771–4.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348:2599–608.CrossRefPubMedGoogle Scholar
  75. 75.
    Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, Savas JN, Kiskinis E, Zhuang X, Krüger R, Surmeier DJ, Krainc D. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science. 2017;357(6357):1255–61.  https://doi.org/10.1126/science.aam9080.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Capurso
    • 1
  • Gaetano Crepaldi
    • 2
  • Cristiano Capurso
    • 3
  1. 1.Department of Internal MedicineSchool of Medicine, University of BariBariItaly
  2. 2.Department of Biomedical ScienceCNR Neuroscience InstitutePadovaItaly
  3. 3.Department of Medical and Surgical SciencesSchool of Medicine, University of FoggiaFoggiaItaly

Personalised recommendations