Advertisement

Extra-Virgin Olive Oil and Type 2 Diabetes Mellitus

  • Antonio Capurso
  • Gaetano Crepaldi
  • Cristiano Capurso
Chapter
Part of the Practical Issues in Geriatrics book series (PIG)

Abstract

Extra-virgin olive oil has been demonstrated to have a deep impact on type 2 diabetes mellitus and on several factors that predispose to diabetes.

References

  1. 1.
    Moscou S. Getting the word out: advocacy, social marketing, and policy development and enforcement. In: Truglio-Londrigan M, Lewenson SB, editors. Public health nursing: practicing population-based care. 2nd ed. Burlington, MA: Jones & Bartlett Learning; 2013. p. 317.Google Scholar
  2. 2.
    Gardner DG, Shoback D. Chapter 17: pancreatic hormones & diabetes mellitus. In: Greenspan's basic & clinical endocrinology. 9th ed. New York: McGraw-Hill Medical; 2011.Google Scholar
  3. 3.
    Saenz A, Fernandez-Esteban I, Mataix A, Ausejo M, Roque M, Moher D. Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005;20(3):CD002966.Google Scholar
  4. 4.
    Malanda UL, Welschen LM, Riphagen II, Dekker JM, Nijpels G, Bot SD. Self-monitoring of blood glucose in patients with type 2 diabetes mellitus who are not using insulin. Cochrane Database Syst Rev. 2012;1:CD005060.PubMedPubMedCentralGoogle Scholar
  5. 5.
    World Health Organization. The top 10 causes of death. Fact sheet 310.Google Scholar
  6. 6.
    International Diabetes Federation. IDF Diabetes Atlas. 7th ed.Google Scholar
  7. 7.
    International Diabetes Federation. IDF Diabetes Atlas. 6th ed. 2013. p. 7.Google Scholar
  8. 8.
    American Diabetes, Association. Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2013;36:1033–46.CrossRefGoogle Scholar
  9. 9.
    Risérus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Progr Lipid Res. 2009;48:44–51.CrossRefGoogle Scholar
  10. 10.
    Malik VS, Popkin BM, Bray GA, Després JP, Hu FB. Sugar sweetened beverages, obesity, type 2 diabetes and cardiovascular disease risk. Circulation. 2010;121:1356–64.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Malik VS, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care. 2010;33:2477–83.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    DeFronzo RA, Ferrannini E, Koivisto V. New concepts in the pathogenesis and treatment of noninsulin-dependent diabetes mellitus. Am J Med. 1983;74:52–81.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA. Effect of fatty acids on glucose production and utilization in man. J Clin Invest. 1983;72:1737–47.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kelley DE, Mokan M, Simoneau JA, Mandarino LJ. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest. 1993;92:91–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96:939–49.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Bays H, Ballantyne C. Adiposopathy: why do adiposopathy and obesity cause metabolic disease? Future Lipidol. 2006;1:389–420.CrossRefGoogle Scholar
  18. 18.
    Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest. 2008;118:2992–3002.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Madonna R, De Caterina R. Atherogenesis and diabetes: focus on insulin resistance and hyperinsulinema. Rev Esp Cardiol. 2012;65:309–13.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism. 1987;36:54–9.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bays HE. Adiposopathy is “sick fat” a cardiovascular disease? J Am Coll Cardiol. 2011;57:2461–73.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T, Concha H, Hassan M, Rydén M, Frisén J, Arner P. Dynamics of fat cell turnover in humans. Nature. 2008;453:783–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bays HE, González-Campoy JM, Bray GA, Kitabchi AE, Bergman DA, Schorr AB, Rodbard HW, Henry RR. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6:343–68.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Danforth E Jr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet. 2000;26:13.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ravussin E, Smith SR. Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci. 2002;967:363–78.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Pasarica M, Xie H, Hymel D, Bray G, Greenway F, Ravussin E, Smith SR. Lower total adipocyte number but no evidence for small adipocyte depletion in patients with type 2 diabetes. Diabetes Care. 2009;32:900–2.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Martin ML, Jensen MD. Effects of body fat distribution on regional lipolysis in obesity. J Clin Invest. 1991;88:609–13.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11:11–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Pedersen SB. Studies on receptors and actions of steroid hormones in adipose tissue. Dan Med Bull. 2005;52:258.Google Scholar
  30. 30.
    Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25:831–66.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Rebuffe-Scrive M, Krotkiewski M, Elfverson J, Bjorntorp P. Muscle and adipose tissue morphology and metabolism in Cushing's syndrome. J Clin Endocrinol Metab. 1988;W67:1122–8.CrossRefGoogle Scholar
  32. 32.
    Krotkiewski M, Bjorntorp P, Sjostrom L, Smith U. Impact of obesity on metabolism in men and women: importance of regional adipose tissue distribution. J Clin Invest. 1983;72:1150–62.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lonnqvist F, Thome A, Nilsell K, Hoffstedt J, Arner P. A pathogenic role of visceral fat beta 3-adrenoceptors in obesity. J Clin Invest. 1995;95:1109–16.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kopelman PG, Albon L. Obesity, non-insulin-dependent diabetes mellitus and the metabolic syndrome. Br Med J. 1997;53:322–40.Google Scholar
  35. 35.
    Rebuffe-Scrive M, Andersson B, Olbe L, Bjorntorp P. Metabolism of adipose tissue in intraabdominal depots of non-obese men and women. Metabolism. 1989;38:453–61.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92:347–55.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol. 1999;19:972–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Das UN. Is obesity an inflammatory condition? Nutrition. 2001;17:953–66.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Festa A, D'Agostino R Jr, Williams K, Karter AJ, Mayer-Davis EJ, Tracy RP, Haffner SM. The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes. 2001;25:1407–15.CrossRefGoogle Scholar
  40. 40.
    Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes. 2003;27(Suppl. 3):S53–5.CrossRefGoogle Scholar
  41. 41.
    Yudkin JS. Adipose tissue, insulin action and vascular disease: inflammatory signals. Int J Obes. 2003;27(Suppl. 3):S25–8.CrossRefGoogle Scholar
  42. 42.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112:1785–8.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature. 2002;420:333–6.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Clement K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, Sicard A, Rome S, Benis A, Zucker JD, Vidal H, Laville M, Barsh GS, Basdevant A, Stich V, Cancello R, Langin D. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 2004;18:1657–69.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sierra-Honigmann MR, Nath AK, Murakami C, García-Cardeña G, Papapetropoulos A, Sessa WC, Madge LA, Schechner JS, Schwabb MB, Polverini PJ, FloresRiveros JR. Biological action of leptin as an angiogenic factor. Science. 1998;281:1683–6.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouch N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med. 2002;8:731–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Madonna R, Pandolfi A, Massaro M, Consoli A, De Caterina R. Insulin enhances vascular cell adhesion molecule-1 expression in human cultured endothelial cells through a pro-atherogenic pathway mediated by p38 mitogen-activated protein-kinase. Diabetologia. 2004;47:532–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Suganami T, Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010;88:33–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ward CW, Lawrence MC. Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor. BioEssays. 2009;31:422–34.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA. Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem. 2003;278:8199–211.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB III, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001;292:1728–31.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE, Birnbaum MJ. The role of glycogen synthase kinase 3beta in insulin-stimulated glucose metabolism. J Biol Chem. 1999;274:17934–40.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kitamura T, Kitamura Y, Kuroda S, Hino Y, Ando M, Kotani K, Konishi H, Matsuzaki H, Kikkawa U, Ogawa W, Kasuga M. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol Cell Biol. 1999;19:6286–96.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Proud CG, Wang X, Patel JV, Campbell LE, Kleijn M, Li W, Browne GJ. Interplay between insulin and nutrients in the regulation of translation factors. Biochem Soc Trans. 2001;29:541–7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Shepherd PR. Mechanisms regulating phosphoinositide 3-kinase signalling in insulin-sensitive tissues. Acta Physiol Scand. 2005;183:3–12.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Standaert ML, Bandyopadhyay G, Galloway L, Soto J, Ono Y, Kikkawa U, Farese RV, Leitges M. Effects of knockout of the protein kinase C gene on glucose transport and glucose homeostasis. Endocrinology. 1999;140:4470–7.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Leitges M, Plomann M, Standaert ML, Bandyopadhyay G, Sajan MP, Kanoh Y, Farese RV. Knockout of PKC enhances insulin signaling through PI3K. Mol Endocrinol. 2002;16:847–58.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Stephens JM, Lee J, Pilch PF. Tumor necrosis factor-a-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. J Biol Chem. 1997;272:971–6.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sun XJ, Goldberg JL, Qiao LY, Mitchell JJ. Insulin induced insulin receptor substrate-1 degradation is mediated by the proteasome degradation pathway. Diabetes. 1999;48:1359–64.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, Dunaif A, White MF. Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest. 2001;107:181–9.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, Coleman E, Smith C. Effects of fat on insulin stimulated carbohydrate metabolism in normal men. J Clin Invest. 1991;88:960–6.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear J, Kraegen EW, White MF, Shulman GI. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 1999;48:1270–4.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Gao Z, Zhang X, Zuberi A, Hwang D, Quon MJ, Lefevre M, Ye J. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3–L1 adipocytes. Mol Endocrinol. 2004;18:2024–34.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Gual P, Le Marchand-Brustel Y, Tanti JF. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie. 2005;87:99–109.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277:1531–7.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hotamisligil GS, Arne P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95:2409–15.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Skolnik EY, Marcusohn J. Inhibition of insulin receptor signaling by TNF: potential role in obesity and non-insulin-dependent diabetes mellitus. Cytokine Growth Factor Rev. 1996;7:161–73.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kim JK, Kim YJ, Fillmore JJ, Chen Y, Moore I, Lee J, Yuan M, Li ZW, Karin M, Perret P, Shoelson SE, Shulman GI. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest. 2001;108:437–46.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    White MF. Insulin signaling in health and disease. Science. 2003;302:1710–1.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Pirola L, Johnston AM, Van Obberghen E. Modulation of insulin action. Diabetologia. 2004;47:170–84.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Arner P. The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones. Trends Endocrinol Metab. 2003;14:137–45.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Schwingshackl L, Missbach B, Konig J, Hoffmann G. Adherence to a Mediterranean diet and risk of diabetes: a systematic review and meta-analysis. Public Health Nutr. 2015;18:1292–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Huo R, Du T, Xu Y, Xu W, Chen X, Sun K, et al. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. Eur J Clin Nutr. 2015;69:1200–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Martìnez-Gonzàlez MA, Nunez-Cordoba JM, Basterra-Gortari FJ, Beunza JJ, Vazquez Z, Benito S, Tortosa A, Bes-Rastrollo M. Adherence to Mediterranean diet and risk of developing diabetes: prospective cohort study. Br Med J. 2008;336:1348–51.CrossRefGoogle Scholar
  80. 80.
    Trichopoulou A, Martinez-Gonzalez MA, Tong TY, Forouhi NG, Khandelwal S, Prabhakaran D, et al. Definitions and potential health benefits of the Mediterranean diet: views from experts around the world. BMC Med. 2014;12:112.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Schwingshackl L, Hoffmann G. Does a Mediterranean-type diet reduce cancer risk? Curr Nutr Rep. 2016;5:9–17.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Lopez-Miranda J, Perez-Jimenez F, Ros E, De Caterina R, Badimon L, Covas MI, et al. Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaen and Cordoba (Spain) 2008. Nutr Metab Cardiovasc Dis. 2010;20:284–94.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Qian F, Korat AA, Malik V, Hu FB. Metabolic effects of monounsaturated fatty acid–enriched diets compared with carbohydrate or polyunsaturated fatty acid–enriched diets in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Care. 2016;39:1448–57.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Schwingshackl L, Hoffmann G. Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and eta-analyses. Forum Nutr. 2012;4:1989–2007.Google Scholar
  85. 85.
    Schwingshackl L, Strasser B, Hoffmann G. Effects of monounsaturated fatty acids on glycaemic control in patients with abnormal glucose metabolism: a systematic review and meta-analysis. Ann Nutr Metab. 2011;58:290–6.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Schwingshackl L, Strasser B. High-MUFA diets reduce fasting glucose in patients with type 2 diabetes. Ann Nutr Metab. 2012;60:33–4.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Schwingshackl L, Strasser B, Hoffmann G. Effects of monounsaturated fatty acids on cardiovascular risk factors: a systematic review and meta-analysis. Ann Nutr Metab. 2011;59:176–86.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis. 2014;13:154.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Schwingshackl L, Lampousi AM, Portillo MP, Romaguera D, Hoffmann G, Boeing H. Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials. Nutr Diabetes. 2017;7:e262.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Garg A. High monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis. Am J Clin Nutr. 1998;67(Suppl 3):577–82S.CrossRefGoogle Scholar
  91. 91.
    Rocca AS, LaGreca J, Kalitsky J, Brubaker PL. Monounsaturated fatty acid diets improve glycemic tolerance through increased secretion of glucagon-like peptide-1. Endocrinology. 2001;142:1148–55.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ros E. Dietary cis-monounsaturated fatty acids and metabolic control in type 2 diabetes. Am J Clin Nutr. 2003;78(Suppl 3):617–25S.CrossRefGoogle Scholar
  93. 93.
    Paniagua JA, de la Sacristana AG, Sánchez E, Romero I, Vidal-Puig A, Berral FJ, et al. MUFA-rich diet improves postprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. J Am Coll Nutr. 2007;26:434–44.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, Ruiz-Gutiérrez V, Covas MI, Fiol M, Gómez-Gracia E, López-Sabater MC, Vinyoles E, Arós F, Conde M, Lahoz C, Lapetra J, Sáez G, Ros E. PREDIMED Study Investigators effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Inter Med. 2006;145:1–11.CrossRefGoogle Scholar
  95. 95.
    Rojo-Martínez G, Esteva I, Ruiz de Adana MS, García-Almeida JM, Tinahones F, Cardona F, Morcillo S, García-Escobar E, García-Fuentes E, Soriguer F. Dietary fatty acids and insulin secretion: a population-based study. Eur J Clin Nutr. 2006;60:1195–2000.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Thomsen C, Storm H, Holst JJ, Hermansen K. Differential effects of saturated and monounsaturated fats on posprandial lipemia and glucagon-like peptide 1 response in patients with type 2 diabetes. Am J Clin Nutr. 2003;77:605–11.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Han TS, Sattar N, Williams K, Gonzalez-Villalpando C, Lean ME, Haffner SM. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes study. Diabetes Care. 2002;25:2016–21.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Esposito K, Pontillo A, Giugliano F, Marfella R, Nicoletti G, Giugliano D. Association of low interleukin-10 levels with the metabolic syndrome in obese women. J Clin Endocrinol Metab. 2003;88:1055–8.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Tamakoshi K, Yatsuya H, Kondo T, Hori Y, Ishikawa M, Zhang H, Murata C, Otsuka R, Zhu S, Toyoshima H. The metabolic syndrome is associated with elevated circulating C-reactive protein in healthy reference range, a systemic low-grade inflammatory state. Int J Obes Relat Metab Disord. 2003;27:443–9.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14719 initially healthy American women. Circulation. 2003;107:391–7.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Ziccardi P, Nappo F, Giugliano G, Esposito K, Marfella R, Cioffi M, D'Andrea F, Molinari AM, Giugliano D. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation. 2002;105:804–9.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, D'Armiento M, D'Andrea F, Giugliano D. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292:1440–6.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Schwingshackl L, Christoph M, Hoffmann G. Effects of olive oil on markers of inflammation and endothelial function. A systematic review and meta-analysis. Forum Nutr. 2015;7:7651–75.Google Scholar
  104. 104.
    Carluccio MA, Siculella L, Ancora MA, Massaro M, Scoditti E, Storelli C, Visioli F, Distante A, De Caterina R. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol. 2003;23:622–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Visioli F, Caruso D, Grande S, Bosisio R, Villa M, Galli G, Sirtori C, Galli C. Virgin olive oil study (VOLOS): vasoprotective potential of extra virgin olive oil in mildly dyslipidemic patients. Eur J Nutr. 2005;44:121–7.CrossRefPubMedGoogle Scholar
  106. 106.
    Hanhineva K, Törrönen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkänen H, Poutanen K. Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci. 2010;11:1365–402.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Kim Y, Keogh JB, Clifton PM. Polyphenols and glycemic control. Nutrients. 2016;8:E17.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Valdés L, Cuervo A, Salazar N, Ruas-Madiedo P, Gueimonde M, González S. The relationship between phenolic compounds from diet and microbiota: impact on human health. Food Funct. 2015;6(8):2424–39.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Selma MV, Espín JC, Tomás-Barberán FA. Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem. 2009;57:6485–501.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Bendini A, Cerretani L, Carrasco-Pancorbo A, Gómez-Caravaca AM, Segura-Carretero A, Fernández-Gutiérrez A, Lercker G. Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules. 2007;12:1679–719.CrossRefPubMedGoogle Scholar
  111. 111.
    Visioli F, Galli C, Bornet F, Mattei A, Patelli R, Galli G, Caruso D. Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett. 2000;468(2–3):159–60.CrossRefPubMedGoogle Scholar
  112. 112.
    Tuck KL, Freeman MP, Hayball PJ, Stretch GL, Stupans I. The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats. J Nutr. 2001;131:1993–6.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Miró-Casas E, Covas MI, Fitó M, Farré-Albadalejo M, Marrugat J, de la Torre R. Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans. Eur J Clin Nutr. 2003;57:186–90.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Gao H, Huang YN, Gao B, Xu PY, Inagaki C, Kawabata J. α-glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chem. 2008;106:1195–201.CrossRefGoogle Scholar
  115. 115.
    Xiao JB, Högger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem. 2015;22:23–38.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Medina-Remón A, Tresserra-Rimbau A, Pons A, Tur JA, Martorell M, Ros E, et al. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutr Metab Cardiovasc Dis. 2015;25:60–7.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    de Bock M, Derraik JG, Brennan CM, Biggs JB, Morgan PE, Hodgkinson SC, et al. Olive (Olea Europaea L.) leaf polyphenols improve insulin sensitivity in middleaged overweight men: a randomized, placebo-controlled, crossover trial. PLoS One. 2013;8:e57622.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Tresserra-Rimbau A, Guasch-Ferré M, Salas-Salvadó J, Toledo E, Corella D, Castañer O, Guo X, Gómez-Gracia E, Lapetra J, Arós F, Fiol M, Ros E, Serra-Majem L, Pintó X, Fitó M, Babio N, Martínez-González MA, Sorli JV, López-Sabater MC, Estruch R, Lamuela-Raventós RM, PREDIMED study investigators. Intake of total polyphenols and some classes of polyphenols is inversely associated with diabetes in elderly people at high cardiovascular disease risk. J Nutr. 2016;146:767–77.Google Scholar
  119. 119.
    De Bock M, Derraik JG, Brennan CM, Biggs JB, Morgan PE, Hodgkinson SC, Hofman PL, Cutfield WS. Olive (olea europaea l.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PLoS One. 2013;8:e57622.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wainstein J, Ganz T, Boaz M, Bar Dayan Y, Dolev E, Kerem Z, Madar Z. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J Med Food. 2012;15:605–10.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Navarro M, Morales FJ. In vitro investigation on the antiglycative and carbonyl trapping activities of hydroxythyrosol. Eur Food Res Technol. 2016;242:1101–10.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Capurso
    • 1
  • Gaetano Crepaldi
    • 2
  • Cristiano Capurso
    • 3
  1. 1.Department of Internal MedicineSchool of Medicine, University of BariBariItaly
  2. 2.Department of Biomedical ScienceCNR Neuroscience InstitutePadovaItaly
  3. 3.Department of Medical and Surgical SciencesSchool of Medicine, University of FoggiaFoggiaItaly

Personalised recommendations