The Impact of the Mediterranean Diet on Aging, Frailty, and Longevity

  • Antonio Capurso
  • Gaetano Crepaldi
  • Cristiano Capurso
Part of the Practical Issues in Geriatrics book series (PIG)


In the European Union, the number of people aged 65+ will almost double over the next 50 years, from 85 million in 2008 to 151 million in 2060 [1]. As reported by Clegg et al. [2], population aging is also accelerating rapidly worldwide. People older than 65 years increased from 461 million in 2004 to an estimated rate of 2 billion people by 2050 [3, 4]. This has profound implications for planning and provision of health and social care. The longer life does not go, however, perceived as a social and health problem. Indeed, it is an incredibly precious resource. It offers the opportunity to reconsider not only what older age might be, but how our whole life could unfold [5, 6]. For example, in high-income countries, there is evidence that many people are trying to spend these extra years of their advanced age in innovative ways, such as taking up a new career or continuing education; otherwise, they are pursuing a neglected passion [7]. However, the scope of opportunities that arise from these extra years of life are heavily dependent on the state of health and self-sufficiency of everyone. That is, if we live in good health the years of our old age, our ability to dedicate ourselves to our activities will be little different from that of a younger person. If these added years are dominated by the decline in the state of health and self-sufficiency and mental state, then the implications for older people and for society will be much more negative [6].


  1. 1.
  2. 2.
    Clegg A. Frailty in elderly people. Lancet. 2013;381:752–62.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kinsella K, Phillips DR. Global aging: the challenge of success. Population bulletin vol. 60, no. 1. Population Reference Bureau: Washington; 2005.Google Scholar
  4. 4.
    United Nations. The world at six billion. 12 October 1999.
  5. 5.
    Beard JR. The World report on ageing and health: a policy framework for healthy ageing. Lancet. 2016;387:2145–54.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Beard JR, Bloom DE. Towards a comprehensive public health response to population ageing. Lancet. 2015;385:658–61.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Age Wave, Sun America. Age Wave/Sun America Retirement Reset Study. Los Angeles, CA: Age Wave, Sun America; 2011.Google Scholar
  8. 8.
    Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–56.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Walston J, Hadley EC, Ferrucci L, et al. Research agenda for frailty in older adults: toward a better understanding of physiology and aetiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. J Am Geriatr Soc. 2006;54:991–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Eeles EM, White SV, O’Mahony SM, et al. The impact of frailty and delirium on mortality in older inpatients. Age Ageing. 2012;41:412–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Strandberg TE, Pitkälä KH. Frailty in elderly people. Lancet. 2007;369:1328–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Song X, Mitnitski A, Rockwood K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. J Am Geriatr Soc. 2010;58:681–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Fried LP, Ferrucci L, Darer J, et al. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol. 2004;59:255–63.CrossRefGoogle Scholar
  14. 14.
    Bandeen-Roche K, Xue Q-L, Ferrucci L, et al. Phenotype of frailty: characterization in the women’s health and aging studies. J Gerontol A Biol Sci Med Sci. 2006;61:262–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Morley JE, Haren MT, Rolland Y, Kim MJ. Frailty. Med Clin N Am. 2006;90:837–47.PubMedCrossRefGoogle Scholar
  16. 16.
    Flatt T. A new definition of aging? Front Genet. 2012;3:148.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Giaimo S, d’Adda di Fagagna F. Is cellular senescence an example of antagonistic pleiotropy? Aging Cell. 2012;11:378–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Sharpless NE. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature. 2001;413:86–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Sager R. Senescence as a mode of tumor suppression. Environ Health Perspect. 1991;93:59–62.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Baker DJ. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479:232–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Baker DJ. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency. Nat Cell Biol. 2008;10:825–36.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Baker DJ. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat Genet. 2004;36:744–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–35.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kaszubowska L. Telomere shortening and ageing of the immune system. J Physiol Pharmacol. 2008;59(suppl. 9):169–86.PubMedGoogle Scholar
  25. 25.
    Titus S. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5:172ra121.CrossRefGoogle Scholar
  26. 26.
    Brown MK, Naidoo N. The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol. 2012;3:263.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Shimizu I. p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell Metab. 2012;15:51–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Minamino T. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med. 2009;15:1082–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Ryan AS. Insulin resistance with aging: effects of diet and exercise. Sports Med. 2000;30:327–46.PubMedCrossRefGoogle Scholar
  30. 30.
    Walters MS. Smoking accelerates aging of the small airway epithelium. Respir Res. 2014;15:94.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005;26:19–39.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Xu H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Roden M. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996;97:2859–65.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Guo N. Short telomeres compromise beta-cell signaling and survival. PLoS One. 2011;6:e17858.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yang TK. Davallialactone from mushroom reduced premature senescence and inflammation on glucose oxidative stress in human diploid fibroblast cells. J Agric Food Chem. 2013;61:7089–95.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu J. Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent p21 signaling. Cell Signal. 2014;26:110–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Mortuza R, Chen S, Feng B, Sen S, Chakrabarti S. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One. 2013;8:e54514.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kim YJ. miR-486–5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose. Stem Cells Dev. 2012;21:1749–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Jialal I, Devaraj S. The role of oxidized low-density lipoprotein in atherogenesis. J Nutr. 1996;126:1053S–7S.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ilhan F, Kalkanli ST. Atherosclerosis and the role of immune cells. World J Clin Cases. 2015;3:345–52.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Salpea KD, Humphries SE. Telomere length in atherosclerosis and diabetes. Atherosclerosis. 2010;209:35–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kawashima S, Yokoyama M. Dysfunction of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24:998–1005.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Riera CE, Dillin A. Tipping the metabolic scales towards increased longevity in mammals. Nat Cell Biol. 2015;17:196–203.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Finkel T. The metabolic regulation of aging. Nat Med. 2015;21(12):1416–23.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Bertrand HA, Lynd FT, Masoro EJ, Yu BP. Changes in adipose mass and cellularity through the adult life of rats fed ad libitum or a life-prolonging restricted diet. J Gerontol. 1980;35:827–35.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Barzilai N, Banerjee S, Hawkins M, Chen W, Rossetti L. Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J Clin Invest. 1998;101:1353–61.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Liao CY, Rikke BA, Johnson TE, Diaz V, Nelson JF. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell. 2010;9:92–5.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Speakman JR, Mitchell SE. Caloric restriction. Mol Asp Med. 2011;32:159–221.CrossRefGoogle Scholar
  49. 49.
    Liao CY. Fat maintenance is a predictor of the murine lifespan response to dietary restriction. Aging Cell. 2011;10:629–39.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Vermeij WP. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature. 2016;537:427–47.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Giezenaar C. Ageing is associated with decreases in appetite and energy intake—a meta-analysis in healthy adults. Forum Nutr. 2016;8:28. Scholar
  52. 52.
    Huffman KM. Caloric restriction alters the metabolic response to a mixed-meal: results from a randomized, controlled trial. PLoS One. 2012;7:e28190.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Willette AA. Interleukin-8 and interleukin-10, brain volume and microstructure, and the influence of calorie restriction in old rhesus macaques. Age (Dordr). 2013;35:2215–27.CrossRefGoogle Scholar
  54. 54.
    Youm YH. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat Med. 2015;21:263–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Yang H, Youm YH, Dixit VD. Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J Immunol. 2009;183:3040–52.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Masoro EJ. Overview of caloric restriction and ageing. Mech Ageing Dev. 2005;126:913–22.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Dillin A. Rates of behavior and aging specified by mitochondrial function during development. Science. 2002;298:2398–401.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Lee SS. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet. 2003;33:40–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Short KR. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005;102:5618–23.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Trifunovic A. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Kujoth GC. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–4.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Rea SL, Ventura N, Johnson TE. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biol. 2007;5:e259.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Yun J, Finkel T. Mitohormesis. Cell Metab. 2014;19:757–66.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med. 2014;20:709–11.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ristow M, Schmeisser K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose-Response. 2014;12:288–341.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    López-Lluch G. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci U S A. 2006;103:1768–73.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Finley LW. Skeletal muscle transcriptional coactivator PGC-1α mediates mitochondrial, but not metabolic, changes during calorie restriction. Proc Natl Acad Sci U S A. 2012;109:2931–6.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gomes AP. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155:1624–38.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Cuervo AM. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy. 2005;1:131–40.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Rana A, Rera M, Walker DW. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A. 2013;110:8638–43.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Capurso C, Vendemiale G. The mediterranean diet reduces the risk and mortality of the prostate cancer: a narrative review. Front Nutr. 2017;4:38. Scholar
  74. 74.
    Willett WC, Sacks F, Trichopoulou A, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. 1995;61(Suppl 6):S1402–6.CrossRefGoogle Scholar
  75. 75.
    Fundación Dieta Mediterránea. (2010).
  76. 76.
    Keys AB. Seven Countries: A multivariate analysis of death and coronary heart disease. Cambridge, MA: Harvard University Press; 1980. p. 381.CrossRefGoogle Scholar
  77. 77.
    Trichopoulou A. Adherence to a mediterranean diet and survival in a greek population. N Engl J Med. 2003;348:2599–608.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Trichopoulou A. Diet and overall survival in the elderly. BMJ. 1995;311:1457–60.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Estruch R. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368:1279–90.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Sofi F. Adherence to Mediterranean diet and health status: meta-analysis. BMJ. 2008;337:a1344. Scholar
  81. 81.
    Sofi F. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr. 2010;92:1189–96.CrossRefPubMedGoogle Scholar
  82. 82.
    Qi W. The ω-3 fatty acid α-linolenic acid extends Caenorhabditis elegans lifespan via NHR-49/PPARα and oxidation to oxylipins. Aging Cell. 2017;16(5):1125–35.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Mathers JC. Nutrition and ageing: knowledge, gaps and research priorities. Proc Nutr Soc. 2013;72(2):246–50.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature. 2011;464:529–35.CrossRefGoogle Scholar
  85. 85.
    Huffman DM. Energetic interventions for healthspan and resiliency with aging. Exp Gerontol. 2016;86:73–83.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lafortune L. Behavioural risk factors in mid-life associated with successful ageing, disability, dementia and frailty in later life: a rapid systematic review. PLoS One. 2016;11(2):e0144405. Scholar
  87. 87.
    Britton A, Shipley M, Singh-Manoux A, Marmot MG. Successful aging: the contribution of early life and midlife risk factors. J Am Geriatr Soc. 2008;56:1098–105.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Akbaraly T, Sabia S, Hagger-Johnson G, et al. Does overall diet in midlife predict future aging phenotypes? A cohort study. Am J Med. 2013;126:411–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Samieri C. The association between dietary patterns at midlife and health in aging an observational study. Ann Intern Med. 2013;159:584–91.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Trichopoulou A. Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. BMJ. 2005;330(7498):991.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Shi Z. Food habits, lifestyle factors and mortality among oldest old Chinese: the Chinese longitudinal healthy longevity survey (CLHLS). Forum Nutr. 2015;7:7562–79.Google Scholar
  92. 92.
    Carruba G. Nutrition, aging and cancer: lessons from dietary intervention studies. Immun Ageing. 2016;13:13. Scholar
  93. 93.
    Serra-Majem L, Roman B, Estruch R. Scientific evidence of interventions using the Mediterranean diet: a systematic review. Nutr Rev. 2006;64:S27–47.PubMedCrossRefGoogle Scholar
  94. 94.
    Rees K. “Mediterranean” dietary pattern for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013;8:CD009825. Scholar
  95. 95.
    Sleiman D, Al-Badri MR, Azar ST. Effect of Mediterranean diet in diabetes control and cardiovascular risk modification: a systematic review. Front Public Health. 2015;3:69. Scholar
  96. 96.
    Bonaccio M, Cerletti C, Iacoviello L, de Gaetano G. Mediterranean diet and low-grade subclinical inflammation: the moli-sani study. Endocr Metab Immune Disord Drug Targets. 2015;15:18–24.PubMedCrossRefGoogle Scholar
  97. 97.
    Di Renzo L. Changes in LDL oxidative status and oxidative and inflammatory gene expression after red wine intake in healthy people: a randomized trial. Mediat Inflamm. 2015;2015:317348. Scholar
  98. 98.
    Milte CM, McNaughton SA. Dietary patterns and successful ageing: a systematic review. Eur J Nutr. 2016;55:423–50.PubMedCrossRefGoogle Scholar
  99. 99.
    Parletta N, Milte CM, Meyer BJ. Nutritional modulation of cognitive function and mental health. J Nutr Biochem. 2013;24:725–43.PubMedCrossRefGoogle Scholar
  100. 100.
    Smaga I. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep. 2015;67:569–80.PubMedCrossRefGoogle Scholar
  101. 101.
    Ticinesi A. Nutrition and inflammation in older individuals: focus on vitamin D, n-3 polyunsaturated fatty acids and whey proteins. Forum Nutr. 2016;8:186. Scholar
  102. 102.
    Giunta B. Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation. 2008;5:51. Scholar
  103. 103.
    Stepanova M. Age-independent rise of inflammatory scores may contribute to accelerated aging in multimorbidity. Oncotarget. 2015;6:1414–21.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Ostan R. Inflammaging and cancer: a challenge for the mediterranean diet. Forum Nutr. 2015;7:2589–621.Google Scholar
  105. 105.
    Brown PJ. Inflammation, depression, and slow gait: a high mortality phenotype in later life. J Gerontol A Biol Sci Med Sci. 2016;71:221–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Giovannini S. Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha as predictors of mortality in frail, community-living elderly individuals. J Am Geriatr Soc. 2011;59:1679–85.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Cederholm T. The role of malnutrition in older persons with mobility limitations. Curr Pharm Des. 2014;20:3173–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Jensen GL. Malnutrition and inflammation—“burning down the house”: inflammation as an adaptive physiologic response versus self-destruction? J Parenter Enter Nutr. 2015;39:56–62.CrossRefGoogle Scholar
  109. 109.
    Batt J, Dos Santos CC, Herridge MS. Muscle injury during critical illness. J Am Med Assoc. 2013;310:1569–70.CrossRefGoogle Scholar
  110. 110.
    Nouvenne A. The prognostic value of high-sensitivity C-reactive protein and prealbumin for short-term mortality in acutely hospitalized multimorbid elderly patients: a prospective cohort study. J Nutr Health Aging. 2016;20:462–8.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Haran PH, Rivas DA, Fielding RA. Role and potential mechanisms of anabolic resistance in sarcopenia. J Cachexia Sarcopenia Muscle. 2012;3:157–62.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kelaiditi E. Measurements of skeletal muscle mass and power are positively related to a Mediterranean dietary pattern in women. Osteoporos Int. 2016;27:3251–60.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Huang RY. The association between total protein and vegetable protein intake and low muscle mass among the community-dwelling elderly population in Northern Taiwan. Nutrients. 2016;8(6):E373. Scholar
  114. 114.
    Ter Borg S. Differences in nutrient intake and biochemical nutrient status between Sarcopenic and Nonsarcopenic older adults-results from the Maastricht sarcopenia study. J Am Med Dir Assoc. 2016;17(5):393–401.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Verlaan S. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: a case-control study. Clin Nutr. 2017;36(1):267–74.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Fiatarone MA. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330(25):1769–75.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Bonnefoy M. Frailty and nutrition: searching for evidence. J Nutr Health Aging. 2015;19(3):250–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Kiefte-de Jong JC, Mathers JC, Franco OH. Nutrition and healthy ageing: the key ingredients. Proc Nutr Soc. 2014;73(2):249–59.PubMedCrossRefGoogle Scholar
  119. 119.
    Milaneschi Y, Bandinelli S, Corsi AM, et al. Mediterranean diet and mobility decline in older persons. Exp Gerontol. 2011;46(4):303–8.PubMedCrossRefGoogle Scholar
  120. 120.
    Bollweinlu J, Diekmann R, Kaiser MJ, et al. Dietary quality is related to frailty in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2013;68(4):483–9.CrossRefGoogle Scholar
  121. 121.
    Rodacki CLN. Fish-oil supplementation enhances the effects of strength training in elderly women. Am J Clin Nutr. 2012;95(2):428–36.PubMedCrossRefGoogle Scholar
  122. 122.
    Hutchins-Wiese HL. The impact of supplemental n-3 long chain polyunsaturated fatty acids and dietary antioxidants on physical performance in postmenopausal women. J Nutr Health Aging. 2013;17(1):76–80.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Takayama M. Association of marine-origin n-3 polyunsaturated fatty acids consumption and functional mobility in the community-dwelling oldest old. J Nutr Health Aging. 2013;17(1):82–9.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Biolo G. Short-term bed rest impairs amino acid-induced protein anabolism in humans. J Physiol Lond. 2004;558(Pt 2):381–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Volpi E, Mittendorfer B, Rasmussen BB, Wolfe RR. The response of muscle protein anabolism to combined hyperaminoacidemia and glucose-induced hyperinsulinemia is impaired in the elderly. J Clin Endocrinol Metab. 2000;85:4481–90.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Magne H, Savary-Auzeloux I, Rémond D, Dardevet D. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutr Res Rev. 2013;26(2):149–65.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Tieland M, Borgonjen-Van den Berg KJ, van Loon LJC, de Groot LCPGM. Dietary protein intake in community-dwelling, frail, and institutionalized elderly people: scope for improvement. Eur J Nutr. 2012;51(2):173–9.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Talegawkar SA. Development of frailty in community-dwelling elderly men and women. J Nutr. 2012;142:2161–6.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Luz M, León-Muñoz LM. Major dietary patterns and risk of frailty in older adults: a prospective cohort study. BMC Med. 2015;13:11. Scholar
  130. 130.
    Chan R, Leung J, Woo J. Dietary patterns and risk of frailty in Chinese community-dwelling older people in Hong Kong: a prospective cohort study. Forum Nutr. 2015;7:7070–84.Google Scholar
  131. 131.
    Woo J, Leung SSF, Ho SC, Lam TH, Janus ED. A food frequency questionnaire for use in the Chinese population in Hong Kong: description and examination of validity. Nutr Res. 1997;17:1633–41.CrossRefGoogle Scholar
  132. 132.
    Chan R, Chan D, Woo J. Associations between dietary patterns and demographics, lifestyle, anthropometry and blood pressure in Chinese community-dwelling older men and women. J Nutr Sci. 2012;1:e20. eCollection 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Kim S, Haines PS, Siega-Riz AM, Popkin BM. The diet quality index-international (DQI-I) provides an effective tool for cross-national comparison of diet quality as illustrated by China and the United States. J Nutr. 2003;133:3476–84.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Woo J, Cheung B, Ho S, Sham A, Lam TH. Influence of dietary pattern on the development of overweight in a Chinese population. Eur J Clin Nutr. 2008;62:480–7.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Chan R, Chan D, Woo J. The association of a priori and a posterior dietary pattern with the risk of incident stroke in Chinese older people in Hong Kong. J Nutr Health Aging. 2013;17:866–74.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Rahi B, Ajana S, Tabue-Teguo M, Dartigues JF, Peres K, Feart C. High adherence to a Mediterranean diet and lower risk of frailty among French older adults community-dwellers: Results from the Three-City-Bordeaux Study. Clin Nutr. 2017.
  137. 137.
    The Three City Study Group. Vascular factors and risk of dementia: design of the Three-City Study and baseline characteristics of the study population. Neuroepidemiology. 2003;22:316–25.CrossRefGoogle Scholar
  138. 138.
    Veronese N, Stubbs B, Noale M, et al. Adherence to a Mediterranean diet is associated with lower incidence of frailty: a longitudinal cohort study. Clin Nutr. 2017.
  139. 139.
    Felson DT, Nevitt MC. Epidemiologic studies for osteoarthritis: new versus conventional study design approaches. Rheum Dis Clin N Am. 2004;30:783–97.CrossRefGoogle Scholar
  140. 140.
    Available for public access at
  141. 141.
    Block G, Hartman AM, Naughton D. A reduced dietary questionnaire: development and validation. Epidemiology. 1990;1:58–64.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Panagiotakos DB, Pitsavos C, Stefanadis C. Dietary patterns: a Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr Metab Cardiovasc Dis. 2006;16:559–68.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Yannakoulia M, Ntanasi E, Anastasiou CA, Scarmeas N. Frailty and nutrition: from epidemiological and clinical evidence to potential mechanisms. Metabolism. 2017;68:64–76.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Burd NA, Gorissen SH, van Loon LJ. Anabolic resistance of muscle protein synthesis with aging. Exerc Sport Sci Rev. 2013;41:169–73.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Andriollo-Sanchez M. Age-related oxidative stress and antioxidant parameters in middle-aged and older European subjects: the ZENITH study. Eur J Clin Nutr. 2005;59(Suppl. 2):S58–62.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Junqueira VB. Aging and oxidative stress. Mol Asp Med. 2004;25:5–16.CrossRefGoogle Scholar
  147. 147.
    Zujko ME, Witkowska AM, Waskiewicz A, Mironczuk-Chodakowska I. Dietary antioxidant and flavonoid intakes are reduced in the elderly. Oxidative Med Cell Longev. 2015;2015:843173.CrossRefGoogle Scholar
  148. 148.
    Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31:266–300.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Meng SJ, YLJ O. Stress, molecular inflammation and sarcopenia. Int J Mol Sci. 2010;11:1509–26.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Capurso
    • 1
  • Gaetano Crepaldi
    • 2
  • Cristiano Capurso
    • 3
  1. 1.Department of Internal MedicineSchool of Medicine, University of BariBariItaly
  2. 2.Department of Biomedical ScienceCNR Neuroscience InstitutePadovaItaly
  3. 3.Department of Medical and Surgical SciencesSchool of Medicine, University of FoggiaFoggiaItaly

Personalised recommendations