Advertisement

Red and White Wines

  • Antonio Capurso
  • Gaetano Crepaldi
  • Cristiano Capurso
Chapter
Part of the Practical Issues in Geriatrics book series (PIG)

Abstract

In the context of the Mediterranean diet, wine has always covered a central role. In ancient times, Greek and Roman populations loved to conclude their banquets with wine libations, generally red wine diluted with water in a proportion of 1:3. In subsequent eras wine, which was always drunk in low to moderate amounts with meals, remained a fixed component in the diet of populations living to the north of the Mediterranean basin (As the southern Mediterranean population of north Africa and near East are Muslims, they do not drink alcohol or wine).

References

  1. 1.
    Mark Berkowitz “World’s Earliest Wine”. Archaeology. Archaeological Institute of America, 1996; 49. Accessed 13 Jan 2011.
  2. 2.
    Jellinek EM. Drinkers and Alcoholics in Ancient Rome. Edited by Carole D. Yawney and Robert E. Popham. J Stud Alcohol. 1976;37:1718–40.CrossRefPubMedGoogle Scholar
  3. 3.
    Cabras P, Martelli A. In: Chimica degli alimenti. Padova: Piccin Publisher; 2004. ISBN 88-299-1696-X.Google Scholar
  4. 4.
    Viticulture, volume 1—Resources, 2nd Edition, by Ed. Bryan Coombe and Peter Dry, 2004.Google Scholar
  5. 5.
    Mukamal KJ, Conigrave KM, Mittleman MA, Camargo CA, Stampfer MJ, Willet WC, Rimm EB. Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men. New Engl J Med. 2003;348:109–18.CrossRefPubMedGoogle Scholar
  6. 6.
    Pai JK, Mukamal KJ, Rimm EB. Long-term alcohol consumption in relation to all cause and cardiovascular mortality among survivors of myocardial infarction: the health professional follow-up study. Eur Heart J. 2012;33:1598–605.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Muntwyler J, Hennekens CH, Buring JE, Gaziano JM. Mortality and light to moderate alcohol consumption after myocardial infarction. Lancet. 1998;352:1882–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Mukamal KJ, Maclure M, Muller JE, Mittleman MA. Binge drinking and mortality after acute myocardial infarction. Circulation. 2005;112:3839–45.CrossRefPubMedGoogle Scholar
  9. 9.
    Truelsen T, Grønbæk M, Schnohr P, Boysen G. Intake of beer, wine, and spirits and risk of stroke. The Copenhagen City Heart Study. Stroke. 1998;29:2467–72.CrossRefPubMedGoogle Scholar
  10. 10.
    Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ. Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. BMJ. 1999;319:1523–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kiechl S, Willeit J, Poewe W, Egger G, Oberhollenzer F, Muggeo M, Bonora E. Insulin sensitivity and regular alcohol consumption: large, prospective, cross sectional population study (Bruneck study). BMJ. 1996;313:1040–4.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jensen T, Retterstol LJ, Sandset PM, Godal HC, Skjonsberg OH. A daily glass of red wine induces a prolonged reduction in plasma viscosity: a randomized controlled trial. Blood Coagul Fibrinolysis. 2006;17:471–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Pai JK, Hankinson SE, Thadhani R, Rifai N, Pischon T, Rimm EB. Moderate alcohol consumption and lower levels of inflammatory markers in US men and women. Atherosclerosis. 2006;186:113–20.CrossRefPubMedGoogle Scholar
  14. 14.
    Vliegenthart R, Oei HH, van den Elzen AP, van Rooij FJ, Hofman A, Oudkerk M, Witteman JC. Alcohol consumption and coronary calcification in a general population. Arch Intern Med. 2004;164:2355–60.CrossRefPubMedGoogle Scholar
  15. 15.
    Janszky I, Mukamal KJ, Orth-Gomer K, Romelsjo A, Schenck-Gustafsson K, Svane B, Kirkeeide RL, Mittleman MA. Alcohol consumption and coronary atherosclerosis progression—the Stockholm Female Coronary Risk Angiographic Study. Atherosclerosis. 2004;176:311–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget. 2016;7:52517–29.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Levi F, Pasche C, Lucchini F, Ghidoni R, Ferraroni M, La Vecchia C. Resveratrol and breast cancer risk. Eur J Cancer Prev. 2005;14:139–42.CrossRefPubMedGoogle Scholar
  18. 18.
    Medina-Aguilar R, Pérez-Plasencia C, Marchat LA, Gariglio P, García Mena J, Rodríguez Cuevas S, Ruíz-García E, Astudillo-de la Vega H, Hernández Juárez J, Flores-Pérez A, López-Camarillo C. Methylation landscape of human breast cancer cells in response to dietary compound resveratrol. PLoS One. 2016;11:e0157866.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Madreiter-Sokolowski CT, Gottschalk B, Parichatikanond W, Eroglu E, Klec C, Waldeck-Weiermair M, Malli R, Graier WF. Resveratrol specifically kills cancer cells by a devastating increase in the Ca2+ coupling between the greatly tethered endoplasmic reticulum and mitochondria. Cell Physiol Biochem. 2016;39:1404–20.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bai Y, Mao QQ, Qin J, Zheng XY, Wang YB, Yang K, Shen HF, Xie LP. Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo. Cancer Sci. 2010;101:488–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Rashid A, Liu C, Sanli T, Tsiani E, Singh G, Bristow RG, Dayes I, Lukka H, Wright J, Tsakiridis T. Resveratrol enhances prostate cancer cell response to ionizing radiation. Modulation of the AMPK, Akt and mTOR pathways. Radiat Oncol. 2011;6:144.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Barron CC, Moore J, Tsakiridis T, Pickering G, Tsiani E. Inhibition of human lung cancer cell proliferation and survival by wine. Cancer Cell Int. 2014;14:6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol. 2014;92:73–89.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Solfrizzi V, D'Introno A, Colacicco AM, Capurso C, Del Parigi A, Baldassarre Scapicchio P, Scafato E, Amodio M, Capurso A, Panza F, Italian Longitudinal Study on Aging Working Group. Alcohol consumption, mild cognitive impairment, and progression to dementia. Neurology. 2007;68:1790–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Szmitko PE, Verma S. Cardiology patient pages. Red wine and your heart. Circulation. 2005;111:e10–1.CrossRefPubMedGoogle Scholar
  26. 26.
    Duffy SJ, Vita JA. Vita. Effects of phenolics on vascular endothelial function. Curr Opin Lipidol. 2003;14:21–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Olas B, Wachowicz B. Resveratrol, a phenolic antioxidant with effects on blood platelet functions. Platelets. 2005;16:251–60.CrossRefPubMedGoogle Scholar
  28. 28.
    Guarente L, Picard F. Calorie restriction—the SIR2 connection. Cell. 2005;120:473–82.CrossRefPubMedGoogle Scholar
  29. 29.
    Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127:1109–22.CrossRefPubMedGoogle Scholar
  30. 30.
    Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T. A role for the NAD-dependent deacetylase Sirt-1 in the regulation of autophagy. Proc Natl Acad Sci. 2008;105(9):3374.CrossRefPubMedGoogle Scholar
  31. 31.
    Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1 dependent induction of autophagy. Cell Death Dis. 2010;1:e10.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cassidy A, Bertoia M, Chiuve S, Flint A, Forman J, Rimm EB. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am J Clin Nutr. 2016;104:587–94.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lamy S, Beaulieu E, Labbe D, Bedard V, Moghrabi A, Barrette S, Kissela BM, Kittner SJ, Lichtman JH, Lisabeth LD, et al. Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor (PDGF/PDGFR) signaling. Carcinogenesis. 2008;29:1033–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Toufektsian MC, de Lorgeril M, Nagy N, Salen P, Donati MB, Giordano L, Mock HP, Peterek S, Matros A, Petroni K, et al. Chronic dietaryintake of plant-derived anthocyanins protects the rat heart against ischemiareperfusion injury. J Nutr. 2008;138:747–52.CrossRefPubMedGoogle Scholar
  35. 35.
    Rizza S, Muniyappa R, Iantorno M, Kim JA, Chen H, Pullikotil P, Senese N, Tesauro M, Lauro D, Cardillo C, et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab. 2011;96:E782–92.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jin YR, Han XH, Zhang YH, Lee JJ, Lim Y, Chung JH, Yun YP. Antiplatelet activity of hesperetin, a bioflavonoid, is mainly mediated by inhibition of PLC-gamma2 phosphorylation and cyclooxygenase-1 activity. Atherosclerosis. 2007;194:144–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Erlund I, Koli R, Alfthan G, Marniemi J, Puukka P, Mustonen P, Mattila P, Jula A. Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr. 2008;87:323–31.CrossRefPubMedGoogle Scholar
  38. 38.
    Basu A, Du M, Leyva MJ, Sanchez K, Betts NM, Wu M, Aston CE, Lyons TJ. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr. 2010;140:1582–7.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Johnson SA, Figueroa A, Navaei N, Wong A, Kalfon R, Ormsbee LT, Feresin RG, Elam ML, Hooshmand S, Payton ME, et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: a randomized, double-blind, placebo-controlled clinical trial. J Acad Nutr Diet. 2015;115:369–77.CrossRefPubMedGoogle Scholar
  40. 40.
    Dohadwala MM, Holbrook M, Hamburg NM, Shenouda SM, Chung WB, Titas M, Kluge MA, Wang N, Palmisano J, Milbury PE, et al. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am J Clin Nutr. 2011;93:934–40.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Habauzit V, Verny MA, Milenkovic D, Barber-Chamoux N, Mazur A, Dubray C, Morand C. Flavanones protect from arterial stiffness in postmenopausal women consuming grapefruit juice for 6 mo: a randomized, controlled, crossover trial. Am J Clin Nutr. 2015;102:66–74.CrossRefPubMedGoogle Scholar
  42. 42.
    Morand C, Dubray C, Milenkovic D, Lioger D, Martin JF, Scalbert A, Mazur A. Hesperidin contributes to the vascular protective effects of orange juice: a randomized crossover study in healthy volunteers. Am J Clin Nutr. 2011;93:73–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Basu A, Betts NM, Nguyen A, Newman ED, Fu D, Lyons TJ. Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. J Nutr. 2014;144:830–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhu Y, Huang X, Zhang Y, Wang Y, Liu Y, Sun R, Xia M. Anthocyanin supplementation improves HDL-associated paraoxonase 1 activity and enhances cholesterol efflux capacity in subjects with hypercholesterolemia. J Clin Endocrinol Metab. 2014;99:561–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhu Y, Ling W, Guo H, Song F, Ye Q, Zou T, Li D, Zhang Y, Li G, Xiao Y, et al. Anti-inflammatory effect of purified dietary anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr Metab Cardiovasc Dis. 2013;23(9):843.CrossRefPubMedGoogle Scholar
  46. 46.
    Thirunavukkarasu M, Penumathsa SV, Samuel SM, Akita Y, Zhan L, Bertelli AAE, Das DK, Maulik N. White Wine induced Cardioprotection against ischemia-reperfusion injury is mediated by life extending Akt/FOXO3a/NFkappaB survival pathway. J Agric Food Chem. 2008;56:6733–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Chernyshova GA, Plotnikov MB, Smol'yakova VI, Golubeva IV, Aliev OI, Tolstikova TG, Krysin AP, Sorokina IV. Antiarrhythmic activity of n-tyrosol during acute myocardial ischemia and reperfusion. Bull Exp Biol Med. 2007;143:689–91.CrossRefPubMedGoogle Scholar
  48. 48.
    Samuel SM, Thirunavukkarasu M, Penumathsa SV, Paul D, Maulik N. Akt/FOXO3a/SIRT1 mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears towards survival and longevity. J Agric Food Chem. 2008;56:9692–8.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Prasad NR, Jeyanthimala K. Ramachandran S. Caffeic acid modulates ultraviolet radiation-B induced oxidative damage in human blood lymphocytes. J Photochem Photobiol. B. 2009;95:196–203.Google Scholar
  50. 50.
    Khan AQ, Khan R, Qamar W, Lateef A, Ali F, et al. Caffeic acid attenuates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced NF-kB and COX-2 expression in mouse skin: abrogation of oxidative stress, inflammatory responses and proinflammatory cytokine production. Food Chem Toxicol. 2012;50:175–83.CrossRefPubMedGoogle Scholar
  51. 51.
    Bertelli AA. Wine, research and cardiovascular disease: instructions for use. Atherosclerosis. 2007;195:242–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Migliori M, Cantaluppi V, Mannari C, Bertelli AAE, Medica D, Quercia AD, Navarro V, Scatena A, Giovannini L, Biancone L, Panichi V. Caffeic acid, a pieno found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury. PLoS One. 2015;10:e0117530.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mercolini L, Mandrioli R, Raggi MA. Content of melatonin and other antioxidants in grape related foodstuffs: measurement using a MEPS-HPLC-F method. J Pineal Res. 2012;53:21–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Stege PW, Sombra LL, Messina G, Martinez LD, Silva MD. Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. Electrophoresis. 2010;31:2242–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Vitalini S, Gardana C, Zanzotto A, Fico G, Faoro F, Simonetti P, et al. From vineyard to glass: agrochemicals enhance the melatonin and total polyphenol contents and antiradical activity of red wines. J Pineal Res. 2011;51:278–85.CrossRefPubMedGoogle Scholar
  56. 56.
    Rodriguez-Naranjo MI, Gil-Izquierdo A, Troncoso AM, Cantos E, Garcia-Parrilla MC. Melatonin: a new bioactive compound in wine. J Food Compos Anal. 2011;24:603–8.CrossRefGoogle Scholar
  57. 57.
    Rodriguez-Naranjo MI, Gil-Izquierdo A, Troncoso AM, Cantos-Villar E, Garcia-Parrilla MC. Melatonin is synthesized by yeast during alcoholic fermentation in wines. Food Chem. 2011;126:1608–13.CrossRefPubMedGoogle Scholar
  58. 58.
    Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res. 1995;18:28–31.CrossRefPubMedGoogle Scholar
  59. 59.
    Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, et al. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int. 1995;35:627–34.PubMedGoogle Scholar
  60. 60.
    Paredes SD, Korkmaz A, Manchester LC, Tan D-X, Reiter RJ. Phytomelatonin: a review. J Exp Bot. 2009;60:57–69.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Capurso
    • 1
  • Gaetano Crepaldi
    • 2
  • Cristiano Capurso
    • 3
  1. 1.Department of Internal MedicineSchool of Medicine, University of BariBariItaly
  2. 2.Department of Biomedical ScienceCNR Neuroscience InstitutePadovaItaly
  3. 3.Department of Medical and Surgical SciencesSchool of Medicine, University of FoggiaFoggiaItaly

Personalised recommendations