The Smells and Tastes of the Mediterranean Diet: Herbs

  • Antonio Capurso
  • Gaetano Crepaldi
  • Cristiano Capurso
Part of the Practical Issues in Geriatrics book series (PIG)


The herbs that grew in abundance in the Mediterranean area were used from the early years not only in foods to add flavor, but also in drinks to give taste, and in general to add “spice” to the everyday life of people. Herbs and their derivatives together with spices from trees and bushes were collected and used when in season or they were dried to be used as and when needed.


  1. 1.
    Bhagwat S, Haytowits DB, Holden JM. USDA Database for the flavonoid content of selected foods. Nutrient Data Laboratory, Beltsville Human Nutrition Research Center Agricultural Research Service U.S. Departm Agricul. 2011:1–159.Google Scholar
  2. 2.
    Zhang H, Chen F, Wang X, Yao HY. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res Int. 2006;39:833–9.CrossRefGoogle Scholar
  3. 3.
    Wagner H, Bladt S. Plant drug analysis. Berlin, Heidelberg: Springer; 1996. p. 154–75.CrossRefGoogle Scholar
  4. 4.
    Wong PYY, Kitts DD. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem. 2006;97(3):505–15.CrossRefGoogle Scholar
  5. 5.
    Popović M, Kaurinović B, Jakovljević V, Mimica-Dukic N, Bursać M. Effect of parsley (Petroselinum crispum (Mill.) Nym. ex A.W. Hill. Apiaceae) extracts on some biochemical parameters of oxidative stress in mice treated with CCl(4). Phytother Res. 2007;21:717–23.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Fejes SZ, Blázovics A, Lemberkovics E, Petri G, Szȍke E, Kéry A. Free radical scavenging and membrane protective effects of methanol extracts from Anthriscus cerefolium L. (Hoffm.) and Petroselinum crispum (Mill.) nym. ex A.W. Hill. Phytother Res. 2000;14:362–5.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Vora SR, Patil RB, Pillai MM. Protective effects of Petroselinum crispum (Mill) Nyman ex A. W. Hill leaf extract on D-galactose-induced oxidative stress in mouse brain. Indian J Exp Biol. 2009;47:338–42.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Tang EL, Rajarajeswaran J, Fung S, Kanthimathi MS. Petroselinum crispum has antioxidant properties, protects against DNA damage and inhibits proliferation and migration of cancer cells. J Sci Food Agric. 2015;95:2763–71.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Jiang P, Li C, Xiang Z, Jiao B. Tanshinone IIA reduces the risk of Alzheimer’s disease by inhibiting iNOS, MMP2 and NFkappaB p65 transcription and translation in the temporal lobes of rat models of Alzheimer’s disease. Mol Med Rep. 2014;10:689–94.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandström B, Dragsted LO. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999;81:447–55.PubMedCrossRefGoogle Scholar
  11. 11.
    Bolkent S, Yanardag R, Ozsoy-Sacan O, Döger MM. Effects of parsley (Petroselinum crispum) on the liver of diabetic rats: a morphological and biochemical study. Phytother Res. 2004;18:996–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Ozsoy-Sacan O, Yanardag R, Orak H, Ozgey Y, Yarat A, Tunali T. Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats. J Ethnopharmacol. 2006;104:175–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Yanardağ R, Bolkent S, Tabakoğlu-Oğuz A, et al. Effects of Petroselinum crispum extract on pancreatic B cells and blood glucose of streptozotocin-induced diabetic rats. Biol Pharm Bull. 2003;26(8):1206–10.PubMedCrossRefGoogle Scholar
  14. 14.
    Sener G, Saçan O, Yanardak R, Dülger GA. Effects of parsley (petroselinum crispum) on the aorta and heart of stz induced diabetic rats. Plant Food Hum Nutr. 2003;58:1–7.CrossRefGoogle Scholar
  15. 15.
    Behtash N, Kargarzadeh F, Shafaroudi H. Analgesic effects of seed extract from Petroselinum crispum (Tagetes minuta) in animal models. Toxicol Lett. 2008;180(Suppl 5):S127–8.CrossRefGoogle Scholar
  16. 16.
    Moazedi AA, Mirzaie DN, Seyyednejad SM, et al. Spasmolytic effect of Petroselinum crispum (Parsley) on rat’s ileum at different calcium chloride concentrations. Pak J Biol Sci. 2007;10:4036–42.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Branković S, Kitić D, Radenković M, Ivetić V, Veljković S, Nesić M. Relaxant activity of aqueous and ethanol extracts of parsley (Petroselinum crispum (Mill) Nym. ex A. W Hill, Apiaceae) on isolated ileum of rat. Med Pregl. 2010;63:475–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Kreydiyyeh SI, Usta J, Kaouk I, Al-Sadi R. The mechanism underlying the laxative properties of parsley extract. Phytomedicine. 2001;8:382–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Yoshikawa M, Uemura T, Shimoda H, Kishi A, Kawahara Y, Matsuda H. Medicinal foodstuffs. XVIII. Phytoestrogens from the aerial part of Petroselinum crispum MIll. (Parsley) and structures of 6″-acetylapiin and a new monoterpene glycoside, petroside. Chem Pharm Bull. 2000;48(7):1039–44.PubMedCrossRefGoogle Scholar
  20. 20.
    Brankovic S, Djosev S, Kitic D, Radenkovic M, Veljkovic S, Nesic M, Pavlovic D. Hypotensive and negative chronotropic and inotropic effects of the aqueous and ethanol extract from parsley leaves. J Clin Lipidol. 2008;2(Suppl 1):S191, S408.Google Scholar
  21. 21.
    Gadi D, Bnouham M, Aziz M, Ziyyat A, Legssyer A, Legrand C, Lafeve FF, Mekhfi H. Parsley extract inhibits in vitro and ex vivo platelet aggregation and prolongs bleeding time in rats. J Ethnopharmacol. 2009;125(1):170–4.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gadi D, Bnouham M, Aziz M, Ziyyat A, Legssyer A, Bruel A, Berrabah M, Legrand C, Fauvel-Lafeve F, Mekhfi H. Flavonoids purified from parsley inhibit human blood platelet aggregation and adhesion to collagen under flow. J Complement Integr Med. 2012;9(1):19.CrossRefGoogle Scholar
  23. 23.
    Aljanaby AAJJ. Antibacterial activity of an aqueous extract of Petroselinum crispum leaves against pathogenic bacteria isolated from patients with burns infections in Al-najaf Governorate, Iraq. Res Chem Intermed. 2013;39:3709–14.CrossRefGoogle Scholar
  24. 24.
    Kim OM, Kim MK, Lee SO, Lee KR, Kim SD. Antimicrobial effect of ethanol extracts from spices against lactobacillus plantarum and Leuconostoc mesenteroides isolated from kimchi. Journal of the Korean Society of Food Science and. Nutrition. 1998;27:455–60.Google Scholar
  25. 25.
    Manderfield MM, Schafer HW, Davidson PM, Zottola EA. Isolation and identification of antimicrobial furocoumarins from parsley. J Food Prot. 1997;60:72–7.CrossRefGoogle Scholar
  26. 26.
    Ganay SA. Plant-derived flavone Apigenin: the small-molecule with promising activity against therapeutically resistant prostate cancer. Biomed Pharmacother. 2017;85:47–56.CrossRefGoogle Scholar
  27. 27.
    Dambolena JS, Zunino MP, Lucini EI, Olmedo R, Banchio E, Bima PJ, Zygadlo JA. Total phenolic content, radical scavenging properties, and essential oil composition of Origanum species from different populations. J Agric Food Chem. 2010;58:1115–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Mossa AT, Nawwar GA. Free radical scavenging and antiacetylcholinesterase activities of Origanum Majorana L. essential oil. Hum Exp Toxicol. 2011;30:1501–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Al-Howiriny T, Alsheikh A, Alqasoumi S, Al-Yahya M, El Tahir K, Rafatullah S. Protective effect of Origanum Majorana L. ‘marjoram’ on various models of gastric mucosal injury in rats. Am J Chin Med. 2009;37:531–45.PubMedCrossRefGoogle Scholar
  30. 30.
    Perez Gutierrez RM. Inhibition of advanced glycation endproduct formation by Origanum Majorana L. in vitro and in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med. 2012;2012:598638.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Abdel-Massih RM, Fares R, Bazzi S, El-Chami N, Baydoun E, et al. The apoptotic and anti-proliferative activity of Origanum Majorana extracts on human leukemic cell line. Leuk Res. 2010;34:1052–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Fathy SA, Emam MA, Abo Agwa SH, Abu Zahra FA, Youssef FS, Sami RM. The antiproliferative effect of Origanum Majorana on human hepatocarcinoma cell line: suppression of NF-κB. Cell Mol Biol. 2016;62(10):80–4.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Al Dhaheri Y, Eid A, AbuQamar S, Attoub S, Khasawneh M, Aiche G, Hisaindee S, Iratni R. Mitotic arrest and apoptosis in breast cancer cells induced by Origanum Majorana extract: upregulation of TNF-α and downregulation of survivin and mutant p53. PLoS One. 2013;8(2):e56649.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Zheljazkov VD, Callahan A, Cantrell CL. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. J Agric Food Chem. 2008;56:241–5.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Lee SJ, Umano K, Shibamoto T, Lee KG. Identification of volatile components inbasil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L), and their antioxidant properties. Food Chem. 2005;91:131–7.CrossRefGoogle Scholar
  36. 36.
    Daneshian A, Gurbuz B, Cosge B, Ipek A. Chemical components od essential ols from basil (Ocimum basilicum L.) grown at different nitrogen levels. ResearchGate, January 2009.Google Scholar
  37. 37.
    Johnson JD, Ryan MJ, Toft JD II, Graves SW, Hejtmancik MR, Cunningham ML, Herbert R, Abdo KM. Two-year toxicity and carcinogenicity study of methyleugenol in F344/N rats and B6C3F(1) mice. J Agric Food Chem. 2000;48:3620–32.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zhou GD, Moorthy B, Bi J, Donnelly KC, Randerath K. DNA adducts from alkoxyallylbenzene herb and spice constituents in cultured human (HepG2) cells. Environ Mol Mutagen. 2007;48:715–21.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Smith SB, Adams TB, Doull J, Feron VJ, Goodman JI, Marnett LJ, Portoghese PS, Waddell WJ, Wagner BM, Rogers AE, Caldwell J, Sipes IG. Safety assessment of allylalkoxybenzene derivatives used as flavouring substances – methyl eugenol and estragole. Food Chem Toxicol. 2002;40:851–70.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Miele M, Dondero R, Ciarallo G, Mazzei M. Methyleugenol in Ocimum basilicum L. Cv. genovese gigante. J Agric Food Sci. 2001;49:517–21.CrossRefGoogle Scholar
  41. 41.
    Juliani HR, Simon JE. Antioxidant activity of basil. In: Janick J, Whipkey A, editors. Trends in new crops and new uses. Alexandria, VA: ASHS Press; 2002. p. 575–9.Google Scholar
  42. 42.
    Sakkas H, Papadopoulou C. Antimicrobial activity of basil, oregano, and thyme essential oils. J Microbiol Biothecnol. 2017;27:439–8.Google Scholar
  43. 43.
    Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem. 1999;47:3954–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Frankel EN, Huang S-W, Prior E, Aeschbach R. Evaluation of antioxidant activity of rosemary extracts, carnosol and carnosic acid in bulk vegetable oils and fish oil and their emulsion. Sci Food Agricol. 1996;72:201–8.CrossRefGoogle Scholar
  45. 45.
    Shan B, Cai YZ, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem. 2005;53:7749–77759.PubMedCrossRefGoogle Scholar
  46. 46.
    Bhale SD, Xu Z, Prinyawiwatkul W, King JM, Godber JS. Oregano and rosemary extracts inhibit oxidation of long-chain n-3 fatty acids in menhaden oil. J Food Sci. 2007;72:C504–8.PubMedCrossRefGoogle Scholar
  47. 47.
    González-Vallinas M, Reglero G, Ramírez de Molina A. Rosemary (Rosmarinus officinalis L.) extract as a potential complementary agent in anticancer therapy. Nutr Cancer. 2015;67:1221–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Petiwala SM, Puthenveetil AG, Johnson JJ. Polyphenols from the Mediterranean herb rosemary (Rosmarinus officinalis) for prostate cancer. Front Pharmacol. 2013;4:e1–4.CrossRefGoogle Scholar
  49. 49.
    Petiwala SM, Johnson JJ. Diterpenes from rosemary (Rosmarinus officinalis): defining their potential for anti-cancer activity. Cancer Lett. 2015;367:93–102.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Yan M, Li G, Petiwala SM, Householter E, Johnson JJ. Standardized rosemary (Rosmarinus officinalis) extract induces Nrf2/sestrin-2 pathway in colon cancer cells. J Funct Foods. 2015;13:137–47.CrossRefGoogle Scholar
  51. 51.
    Valdés A, Sullini G, Ibáñez E, Cifuentes A, García-Cañas V. Rosemary polyphenols induce unfolded protein response and changes in cholesterol metabolism in colon cancer cells. J Funct Foods. 2015;15:429–39.CrossRefGoogle Scholar
  52. 52.
    Valdés A, García-Cañas V, Koçak E, Simó C, Cifuentes A. Foodomics study on the effects of extracellular production of hydrogen peroxide by rosemary polyphenols on the anti-proliferative activity of rosemary polyphenols against HT-29 cells. Electrophoresis. 2016;37:1795–804.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Valdés A, Artemenko KA, Bergquist J, García-Cañas V, Cifuentes A. Comprehensive proteomic study of the Antiproliferative activity of a polyphenol-enriched rosemary extract on colon cancer cells using Nanoliquid chromatography-Orbitrap MS/MS. J Proteome Res. 2016;15:1971–85.PubMedCrossRefGoogle Scholar
  54. 54.
    González-Vallinas M, Molina S, Vicente G, Zarza V, Martín-Hernández R, García-Risco MR, Fornari T, Reglero G, de Molina AR. Expression of MicroRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of rosemary diterpenes in colon and Pancreatic cancer. PLoS One. 2014;9:e98556.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    González-Vallinas M, Molina S, Vicente G, Sánchez-Martínez R, Vargas T, García-Risco MR, Fornari T, Reglero G, Ramírez de Molina A. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells. Electrophoresis. 2014;35:1719–27.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Yesil-Celiktas O, Sevimli C, Bedir E, Vardar-Sukan F. Inhibitory effects of rosemary extracts, carnosic acid and Rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum Nutr. 2010;65:158–63.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Petiwala SM, Berhe S, Li G, Puthenveetil AG, Rahman O, Nonn L, Johnson JJ. Rosemary (Rosmarinus officinalis) extract modulates HOP/GADD153 to promote androgen receptor degradation and decreases Xenograft tumor growth. PLoS One. 2014;9:e89772.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Tai J, Cheung S, Wu M, Hasman D. Antiproliferation effect of rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine. 2012;19:436–43.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Wang W, Li N, Luo M, Zu Y, Efferth T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules. 2012;17:2704–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Moore J, Megaly M, MacNeil AJ, Klentrou P, Tsiani E. Rosemary extract reduces Akt/mTOR/p70S6K activation and inhibits proliferation and survival of A549 human lung cancer cells. Biomed Pharmacother. 2016;83:725–32.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Cheung S, Tai J. Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol Rep. 2007;17:1525–31.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Ahmad HH, Hamza AH, Hassan AZ, Sayed AH. Promising therapeutic role of Rosmarinus officinalis successive methanolic fraction against colorectal cancer. Int J Pharm Pharm Sci. 2013;5:164–70.Google Scholar
  63. 63.
    Kitano M, Wanibuchi H, Kikuzaki H, Nakatani N, Imaoka S, Funae Y, Hayashi S, Fukushima S. Chemopreventive effects of coumaperine from pepper on the initiation stage of chemical hepatocarcinogenesis in the rat. Jpn J Cancer Res Gann. 2000;91:674–80.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Soyal D, Jindal A, Singh I, Goyal PK. Modulation of radiation-induced biochemical alterations in mice by rosemary (Rosemarinus officinalis) extract. Phytomed Int J Phytothe Phytopharm. 2007;14:701–5.Google Scholar
  65. 65.
    Sharabani H, Izumchenko E, Wang Q, Kreinin R, Steiner M, Barvish Z, Kafka M, Sharoni Y, Levy J, Uskokovic M, et al. Cooperative antitumor effects of vitamin D3 derivatives and rosemary preparations in a mouse model of myeloid leukemia. Int J Cancer. 2006;118:3012–21.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Shabtay A, Sharabani H, Barvish Z, Kafka M, Amichay D, Levy J, Sharoni Y, Uskokovic MR, Studzinski GP, Danilenko M. Synergistic Antileukemic activity of Carnosic acid-rich rosemary extract and the 19-nor Gemini vitamin D analogue in a mouse model of systemic acute myeloid Leukemia. Oncology. 2008;75:203–14.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Borrás-Linares I, Pérez-Sánchez A, Lozano-Sánchez J, Barrajón-Catalán E, Arráez-Román D, Cifuentes A, Micol V, Carretero AS. A bioguided identification of the active compounds that contribute to the antiproliferative/cytotoxic effects of rosemary extract on colon cancer cells. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2015;80:215–22.CrossRefGoogle Scholar
  68. 68.
    Kim D-H, Park K-W, Chae IG, Kundu J, Kim E-H, Kundu JK, Chun K-S. Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Mol Carcinog. 2016;55:1096–110.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Scheckel KA, Degner SC, Romagnolo DF. Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J Nutr. 2008;138:2098–105.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Xavier CPR, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Salvia fruticosa, Salvia officinalis, and rosmarinic acid induce apoptosis and inhibit proliferation of human colorectal cell lines: the role in MAPK/ERK pathway. Nutr Cancer. 2009;61:564–71.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Xu Y, Xu G, Liu L, Xu D, Liu J. Anti-invasion effect of rosmarinic acid via the extracellular signal-regulated kinase and oxidation-reduction pathway in Ls174-T cells. J Cell Biochem. 2010;111:370–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Ramos AA, Pedro D, Collins AR, Pereira-Wilson C. Protection by Salvia extracts against oxidative and alkylation damage to DNA in human HCT15 and CO115 cells. J Toxicol Environ Health A. 2012;75:765–75.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Moon DO, Kim MO, Lee JD, Choi YH, Kim GY. Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells. Cancer Lett. 2010;288:183–91.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Paluszczak J, Krajka-Kuzniak V, Baer-Dubowska W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett. 2010;192:119–25.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Berdowska I, Zieliǹski B, Fecka I, Kulbacka J, Saczko J, Gamian A. Cytotoxic impact of phenolics from Lamiaceae species on human breast cancer cells. Food Chem. 2013;141:1313–21.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Perry EK, Pickering AT, Wang WW, Houghton PJ, Perry NS. Medicinal plants and Alzheimer’s disease: from ethnobotany to phytotherapy. J Pharm Pharmacol. 1999;51:527–34.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Sulniute V, Ragazinskiene O, Venskutonis PR. Comprehensive evaluation of antioxidant potential of 10 salvia species using high pressure methods for the isolation of lipophilic and hydrophilic plant fractions. Plant Foods Hum Nutr. 2016;71:64–71.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Chang CC, Chang YC, Hu WL, Hung YC. Oxidative stress and salvia miltiorrhiza in aging-associated cardiovascular diseases. Oxidative Med Cell Longev. 2016;2016:4797102.Google Scholar
  79. 79.
    Lu Y, Foo Y. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem. 2001;75:197–202.CrossRefGoogle Scholar
  80. 80.
    Lu Y, Foo Y. Salvianolic acid L, a potent phenolic antioxidant from Salvia officinalis. Tetrahedron Lett. 2001;42:8223–5.CrossRefGoogle Scholar
  81. 81.
    Porres-Martinez M, Gonzalez-Burgos E, Carretero ME, Gomez-Serranillos MP. Major selected monoterpenes alpha-pinene and 1,8-cineole found in Salvia Lavandulifolia (Spanish sage) essential oil as regulators of cellular redox balance. Pharm Biol. 2015;53:921–9.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci. 2016;1:201–13.CrossRefGoogle Scholar
  83. 83.
    Birtic S, Dussort P, Pierre FX, Bily AC, Roller M. Carnosic acid. Phytochemistry. 2015;115:9–19.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Abu-Darwish MS, Cabral C, Ferreira IV, Gonçalves MJ, Cavaleiro C, Cruz MT, Al-bdour TH, Salgueiro L. Essential oil of common sage (Salvia officinalis L.) from Jordan: assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. Biomed Res Int. 2013;2013:538940.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Oniga I, Parvu AE, Toiu A, Benedec D. Effects of Salvia officinalis L. extract on experimental acute inflammation. Rev Med Chir Soc Med Nat Iasi. 2007;111:290–4.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Schwager J, Richard N, Fowler A, Seifert N, Raederstorff D. Carnosol and related substances modulate chemokine and cytokine production in macrophages and chondrocytes. Molecules. 2016;21:465.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Akram M, Syed AS, Kim KA, Lee JS, Chang SY, Kim CY, et al. Heme oxygenase 1-mediated novel anti-inflammatory activities of Salvia Plebeia and its active components. J Ethnopharmacol. 2015;4:322–30.CrossRefGoogle Scholar
  88. 88.
    Bonaccini L, Karioti A, Bergonzi MC, Bilia AR. Effects of salvia miltiorrhiza on CNS neuronal injury and degeneration: a plausible complementary role of tanshinones and depsides. Planta Med. 2015;81:1003–16.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ma S, Zhang D, Lou H, Sun L, Ji J. Evaluation of the antiinflammatory activities of tanshinones isolated from salvia miltiorrhiza var. alba roots in THP-1 macrophages. J Ethnopharmacol. 2016;21:193–9.CrossRefGoogle Scholar
  90. 90.
    Nabavi SF, Tenore GC, Daglia M, Tundis R, Loizzo MR, Nabavi SM. The cellular protective effects of rosmarinic acid: from bench to bedside. Curr Neurovasc Res. 2015;12:98–105.PubMedCrossRefGoogle Scholar
  91. 91.
    Herrera-Ruiz M, Garcia-Beltran Y, Mora S, Diaz-Veliz G, Viana GS, Tortoriello J, Ramirez G. Antidepressant and anxiolytic effects of hydroalcoholic extract from Salvia elegans. J Ethnopharmacol. 2006;107:53–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Naderi N, Akhavan N, Aziz Ahari F, Zamani N, Kamalinejad M, Shokrzadeh M, Ahangar N, Motamedi F. Effects of hydroalcoholic extract from salvia verticillata on pharmacological models of seizure, anxiety and depression in mice. Iran J Pharm Res. 2011;10:535–45.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Gross M, Nesher E, Tikhonov T, Raz O, Pinhasov A. Chronic food administration of Salvia sclarea oil reduces animals’ anxious and dominant behavior. J Med Food. 2013;16:216–22.PubMedCrossRefGoogle Scholar
  94. 94.
    Seol GH, Shim HS, Kim PJ, Moon HK, Lee KH, Shim I, Suh SH, Min SS. Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats. J Ethnopharmacol. 2010;130:187–90.PubMedCrossRefGoogle Scholar
  95. 95.
    Liu AD, Cai GH, Wei YY, Yu JP, Chen J, Yang J, et al. Anxiolytic effect of essential oils of Salvia miltiorrhiza in rats. Int J Clin Exp Med. 2015;8:12756–64.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Kavvadias D, Monschein V, Sand P, Riederer P, Schreier P. Constituents of sage (Salvia officinalis) with in vitro affinity to human brain benzodiazepine receptor. Planta Med. 2003;69:113–7.PubMedCrossRefGoogle Scholar
  97. 97.
    Takeda H, Tsuji M, Inazu M, Egashira T, Matsumiya T. Rosmarinic acid and caffeic acid produce antidepressive-like effect in the forced swimming test in mice. Eur J Pharmacol. 2002;449:261–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Pereira P, Tysca D, Oliveira P, da Silva Brum LF, Picada JN, Ardenghi P. Neurobehavioral and genotoxic aspects of rosmarinic acid. Pharmacol Res. 2005;52:199–203.PubMedCrossRefGoogle Scholar
  99. 99.
    Feng Y, You Z, Yan S, He G, Chen Y, Gou X, Peng C. Antidepressant-like effects of salvianolic acid B in the mouse forced swim and tail suspension tests. Life Sci. 2012;90:1010–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Braida D, Capurro V, Zani A, Rubino T, Vigano D, Parolaro D, Sala M. Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents. Br J Pharmacol. 2009;157:844–53.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Perry NS, Bollen C, Perry EK, Ballard C. Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacol Biochem Behav. 2003;75:651–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther. 2003;28:53–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Kennedy DO, Dodd FL, Robertson BC, Okello EJ, Reay JL, Scholey AB, Haskell CF. Monoterpenoid extract of sage (Salvia lavandulaefolia) with cholinesterase inhibiting properties improves cognitive performance and mood in healthy adults. J Psychopharmacol. 2011;25:1088–100.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Tildesley NT, Kennedy DO, Perry EK, Ballard CG, Wesnes KA, Scholey AB. Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiol Behav. 2005;83:699–709.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Tildesley NT, Kennedy DO, Perry EK, Ballard CG, Savelev S, Wesnes KA, Scholey AB. Salvia lavandulaefolia (Spanish sage) enhances memory in healthy young volunteers. Pharmacol Biochem Behav. 2003;75:669–74.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Kennedy DO, Pace S, Haskell C, Okello EJ, Milne A, Scholey AB. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology. 2006;31:845–52.PubMedCrossRefGoogle Scholar
  107. 107.
    Scholey AB, Tildesley NT, Ballard CG, Wesnes KA, Tasker A, Perry EK, Kennedy DO. An extract of Salvia (sage) with anticholinesterase properties improves memory and attention in healthy older volunteers. Psychopharmacology. 2008;198:127–39.PubMedCrossRefGoogle Scholar
  108. 108.
    Moss L, Rouse M, Wesnes KA, Moss M. Differential effects of the aromas of Salvia species on memory and mood. Hum Psychopharmacol. 2010;25:388–96.PubMedCrossRefGoogle Scholar
  109. 109.
    Dent M, Dragovi-Uzelac V, Penic M, Brncic M, Bosiljkov T, Levaj B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in Dalmatian wild sage (Salvia officinalis L.) Extracts. Food Technol Biotechnol. 2013;51(1):84–91.Google Scholar
  110. 110.
    Gird CE, Nencu I, Costea T, Dutu LE, Popescu ML, Ciupitu N. Quantitative analysis of phenolic compounds from Salvia officinalis L. leaves. Farmacia. 2014;62:649–57.Google Scholar
  111. 111.
    Luchicchi A, Bloem B, Viana JN, Mansvelder HD, Role LW. Illuminating the role of cholinergic signaling in circuits ofattention and emotionally salient behaviors. Front Synaptic Neurosci. 2014;6:24.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013;11:315–35.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Smach MA, Hafsa J, Charfeddine B, Dridi H, Limem K. Effects of sage extract on memory performance in mice and acetylcholinesterase activity. Ann Pharm Fr. 2015;73:281–8.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Foolad F, Khodagholi F. Dietary supplementation with Salvia sahendica attenuates acetylcholinesterase activity and increases mitochondrial transcription factor a and antioxidant proteins in the hippocampus of amyloid beta-injected rats. J Pharm Pharmacol. 2013;65:1555–62.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Senol FS, Orhan IE, Erdem SA, Kartal M, Sener B, Kan Y, Celep F, Karhaman A, Dogan M. Evaluation of cholinesterase inhibitory and antioxidant activities of wild and cultivated samples of sage (Salvia fruticosa) by activity-guided fractionation. J Med Food. 2011;14:1476–83.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Sallam A, Mira A, Ashour A, Shimizu K. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine. 2016;23:1005–11.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Merad M, Soufi W, Ghalem S, Boukli F, Baig MH, Ahmad K, Kamal MA. Molecular interaction of acetylcholinesterase with carnosic acid derivatives: a neuroinformatics study. CNS Neurol Disord Drug Targets. 2014;13:440–6.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Marcelo F, Dias C, Martins A, Madeira PJ, Jorge T, Florencio MH, Cañada FJ, Cabrita EJ, Jiménez-Barbero J, Rauter AP. Molecular recognition of rosmarinic acid from Salvia sclareoides extracts by acetylcholinesterase: a new binding site detected by NMR spectroscopy. Chemistry. 2013;19:6641–9.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Xu QQ, Xu YJ, Yang C, Tang Y, Li L, Cai HB, Hou BN, Chen HF, Wang Q, Shi XG, Zhang SJ. Sodium Tanshinone IIA sulfonate attenuates scopolamine-induced cognitive dysfunctions via improving cholinergic system. Biomed Res Int. 2016;2016:9852536.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Zhou Y, Li W, Xu L, Chen L. In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid beta-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ Toxicol Pharmacol. 2011;31:443–52.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    More SV, Kumar H, Cho DY, Yun YS, Choi DK. Toxin-induced experimental models of learning and memory impairment. Int J Mol Sci. 2016;17:1447.PubMedCentralCrossRefPubMedGoogle Scholar
  122. 122.
    Teng Y, Zhang MQ, Wang W, Liu LT, Zhou LM, Miao SK, et al. Compound danshen tablet ameliorated aβ25-35-induced spatial memory impairment in mice via rescuing imbalance between cytokines and neurotrophins. BMC Complement Altern Med. 2014;14:23.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Khodagholi F, Ashabi G. Dietary supplementation with salvia sahendica attenuates memory deficits, modulates CREB and its down-stream molecules and decreases apoptosis in amyloid betainjected rats. Behav Brain Res. 2013;15:62–9.CrossRefGoogle Scholar
  124. 124.
    Alkam T, Nitta A, Mizoguchi H, Itoh A, Nabeshima T. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Abeta(25-35). Behav Brain Res. 2007;180:139–45.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Lee YW, Kim DH, Jeon SJ, Park SJ, Kim JM, Jung JM, Lee HE, Bae SG, Oh HK, Son KH, Ryu JH. Neuroprotective effects of salvianolic acid B on an Aβ25-35 peptide-induced mouse model of Alzheimer’s disease. Eur J Pharmacol. 2013;704(3):70–7.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Rasoolijazi H, Azad N, Joghataei MT, Kerdari M, Nikbakht F, Soleimani M. The protective role of carnosic acid against beta-amyloid toxicity in rats. Sci World J. 2013;2013:917082.CrossRefGoogle Scholar
  127. 127.
    Patil CS, Singh VP, Satyanarayan PS, Jain NK, Singh A, Kulkarni SK. Protective effect of flavonoids against aging- and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology. 2003;69:59–67.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Bowling H, Bhattacharya A, Klann E, Chao MV. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology. Neural Regen Res. 2016;11:363–7.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Qin XY, Cao C, Cawley NX, Liu TT, Yuan J, Loh YP, Cheng Y. Decreased peripheral brain-derived neurotrophic factor levels in Alzheimer’s disease: a meta-analysis study (N = 7277). Mol Psychiatry. 2017;22:312–20.PubMedCrossRefGoogle Scholar
  130. 130.
    Fonteles AA, de Souza CM, de Sousa Neves JC, Menezes AP, Santos do Carmo MR, Fernandes FD, de Araújo PR, de Andrade GM. Rosmarinic acid prevents against memory deficits in ischemic mice. Behav Brain Res. 2016;15:91–103.CrossRefGoogle Scholar
  131. 131.
    Jin X, Liu P, Yang F, Zhang YH, Miao D. Rosmarinic acid ameliorates depressive-like behaviors in a rat model of CUS and up-regulates BDNF levels in the hippocampus and hippocampalderived astrocytes. Neurochem Res. 2013;38:1828–37.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Takeda H, Tsuji M, Yamada T, Masuya J, Matsushita K, Tahara M, limori M, Matsumiya T. Caffeic acid attenuates the decrease in cortical BDNF mRNA expression induced by exposure to forced swimming stress in mice. Eur J Pharmacol. 2006;534:115–21.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Xu SL, Bi CW, Choi RC, Zhu KY, Miernisha A, Dong TT, Tsim KW. Flavonoids induce the synthesis and secretion of neurotrophic factors in cultured rat astrocytes: a signaling response mediated by estrogen receptor. Evid Based Complement Alternat Med. 2013;2013:127075.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Yao RQ, Qi DS, Yu HL, Liu J, Yang LH, Wu XX. Quercetin attenuates cell apoptosis in focal cerebral ischemia rat brain via activation of BDNF-TrkB-PI3K/Akt signaling pathway. Neurochem Res. 2012;37:2777–86.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Kosaka K, Yokoi T. Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells. Biol Pharm Bull. 2003;26:1620–2.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Zhao Y, Xu P, Hu S, Du L, Xu Z, Zhang H, Cui W, Mak S, Xu D, Shen J, Han Y, Liu Y, Xue M. Tanshinone II A, a multiple target neuroprotectant, promotes caveolae-dependent neuronal differentiation. Eur J Pharmacol. 2015;765:437–46.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Wang W, Huang CY, Tsai FJ, Tsai CC, Yao CH, Chen YS. Growth-promoting effects of quercetin on peripheral nerves in rats. Int J Artif Organs. 2011;34:1095–105.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Loizzo MR, Tundis R, Menichini F, Saab AM, Statti GA, Menichini F. Cytotoxic activity of essential oils from Labiatae and Lauraceae families against in vitro human tumor models. Anticancer Res. 2007;27:3293–9.PubMedGoogle Scholar
  139. 139.
    Sertel S, Eichhorn T, Plinkert PK, Efferth T. Anticancer activity of Salvia officinalis essential oil against HNSCC cell line (UMSCC1). HNO. 2011;59:1203–8.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Itani WS, El-Banna SH, Hassan SB, Larsson RL, Bazarbachi A, Gali-Muhtasib HU. Anti colon cancer components from Lebanese sage (Salvia libanotica) essential oil. Cancer Biol Ther. 2008;7:1765–73.PubMedCrossRefGoogle Scholar
  141. 141.
    Loizzo MR, Menichini F, Tundis R, Bonesi M, Nadjafi F, Saab AM, Frega NG, Menichini F. Comparative chemical composition and antiproliferative activity of aerial parts of Salvia leriifolia Benth and Salvia acetabulosa L. essential oils against human tumor cell in vitro models. J Med Food. 2010;13:62–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Theisen C. What ever happened to …? Looking back 10 years. J Natl Cancer Inst. 2001;93:1049–50.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Dewick PM. Medicinal natural products a biosynthetic approach. 2nd ed. London: Willey; 2002.Google Scholar
  144. 144.
    Rose P, Whiteman M, Moore PK, Zhu YZ. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus allium: the chemistry of potential therapeutic agents. Nat Prod Rep. 2005;22(3):351–68.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Amagase H. Clarifying the real bioactive constituents of garlic. J Nutr. 2006;136:716S–25S.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Corzo-Martinez M, Corzo N, Villamiel M. Biological properties of onions and garlic. Trends Food Sci Technol. 2007;18:609–25.CrossRefGoogle Scholar
  147. 147.
    Smith S. In: Block E, editor. Garlic and Other Alliums: The Lore and Science. Cambridge: Royal Society of Chemistry; 2010. p. 100–223, 238–239.Google Scholar
  148. 148.
    Lanzotti V. The analysis of onion and garlic. J Chromatogr. 2006;1112:3–22.CrossRefGoogle Scholar
  149. 149.
    Sivam GP. Protection against Helicobacter pylori and other bacterial infections by garlic. J Nutr. 2001;131(3S):1106S–8S.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Sengupta A, Ghosh S, Bhattacharjee S. Allium vegetables in cancer prevention: an overview. Asian Pac J Cancer Prev. 2004;5:237–45.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Fukushima S, Takada N, Hori T, Wanibuchi H. Cancer prevention by organosulfur compounds from garlic and onion. J Cell Biochem Suppl. 1997;27:100–5.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Wargovich MJ. New dietary anticarcinogens and prevention of gastrointestinal cancer. Dis Colon Rectum. 1988;31:72–5.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Tjokroprawiro A, Pikir BS, Budhiarta AA, Pranawa, Soewondo H, Donosepoetro M, Budhianto FX, Wibowo JA, Tanuwidjaja SJ, Pangemanan M, Widodo H, Surjadhana A. Metabolic effects of onion and green beans on diabetic patients. Tohoku J Exp Med. 1983;141(Suppl):671–6.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Sharma KK, Gupta RK, Gupta S, Samuel KC. Antihyperglycemic effect of onion: effect on fasting blood sugar and induced hyperglycemia in man. Indian J Med Res. 1977;65:422–9.PubMedGoogle Scholar
  155. 155.
    Bordia A, Bansal HC, Arora SK, Singh SV. Effect of the essential oils of garlic and onion on alimentary hyperlipemia. Atherosclerosis. 1975;21:15–9.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Mayer B, Kalus U, Grigorov A, Pindur G, Jung F, Radtke H, Bachmann K, Mrowietz C, Koscielny J, Wenzel E, Kiesewetter H. Effects of an onion-olive oil maceration product containing essential ingredients of the Mediterranean diet on blood pressure and blood fluidity. Arzneimittelforschung. 2001;51:104–11.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Hubbard GP, Wolffram S, de Vos R, Bovy A, Gibbins JM, Lovegrove JA. Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study. Br J Nutr. 2006;96:482–8.PubMedGoogle Scholar
  158. 158.
    Kalus U, Pindur G, Jung F, Mayer B, Radtke H, Bachmann K, Mrowietz C, Koscielny J, Kiesewetter H. Influence of the onion as an essential ingredient of the Mediterranean diet on arterial blood pressure and blood fluidity. Arzneimittelforschung. 2000;50:795–801.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Agarwal RK, Dewar HA, Newell DJ, Das B. Controlled trial of the effect of cycloalliin on the fibrinolytic activity of venous blood. Atherosclerosis. 1977;27:347–51.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Muhlbauer RC, Lozano A, Reinli A. Onion and a mixture of vegetables, salads, and herbs affect bone resorption in the rat by a mechanism independent of their base excess. J Bone Miner Res. 2002;17:1230–6.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Small LD, Bailey JH, Cavallito CJ. Alkyl Thiosulfinates. J Am Chem Soc. 1947;69:1710–3.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Wetli HA, Brenneisen R, Tschudi I, Langos M, Bigler P, Sprang T, Schürch S, Mühlbauer RC. A gamma-glutamyl peptide isolated from onion (Allium cepa L.) by bioassay-guided fractionation inhibits resorption activity of osteoclasts. J Agric Food Chem. 2005;53:3408–14.PubMedCrossRefGoogle Scholar
  163. 163.
    Cutler RR, Wilson P. Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br J Biomed Sci. 2004;61:71–4.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Cavallito C, Bailey J. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. J Am Chem Soc. 1944;66:1950–1.CrossRefGoogle Scholar
  165. 165.
    Feldberg R, Chang S. In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob Agents Chemother. 1988;32:1763–8.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Curtis H, Noll U, Störmann J, Slusarenko AJ. Broad-spectrum activity of the volatile phytoanticipin allicin in extracts of garlic (Allium sativum L.) against plant pathogenic bacteria, fungi and Oomycetes. Physiol Mol Plant Pathol. 2004;65:79–89.CrossRefGoogle Scholar
  167. 167.
    Focke M, Feld A, Lichtenthaler HK. Allicin, a naturally occurring antibiotic from garlic, specifically inhibits acetyl-CoA synthetase. FEBS Lett. 1990;261:106–8.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Rabinkov A, Miron T, Konstantinovski L, Wilchek M, Mirelman D, Weiner L. The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochim Biophys Acta. 1998;1379:233–44.PubMedCrossRefGoogle Scholar
  169. 169.
    Shadkchan Y, Shemesh E, Mirelman D, Miron T, Rabinkov A, Wilchek M, Osherov N. Efficacy of allicin, the reactive molecule of garlic, in inhibiting Aspergillus spp. in vitro, and in a murine model of disseminated aspergillosis. J Antimicrob Chemother. 2004;53:832–6.PubMedCrossRefGoogle Scholar
  170. 170.
    Khodavandi A, Alizadeh F, Harmal NS, Sidik SM, Othman F, Sekawi Z, Jahromi MAF, Ng KP, Chong PP. Comparison between efficacy of allicin and fluconazole against Candida albicans in vitro and in a systemic candidiasis mouse model. FEMS Microbiol Lett. 2011;315:87–93.PubMedCrossRefGoogle Scholar
  171. 171.
    Gruhlke MCH, Nwachukwu I, Arbach M, Anwar A, Noll U, Slusarenko AJ. Allicin from garlic, effective in controlling several plant diseases, ia a reactive sulfur species (RSS) that pushes cells into apoptosis. In: Modern Fungicides and Antifungal Compounds VI. Braunschweig, Gemany: DPG Publishers; 2011. p. 325–34.Google Scholar
  172. 172.
    Li XH, Li CY, Xiang ZG, Hu JJ, Lu JM, Tian RB, Jia W. Allicin ameliorates cardiac hypertrophy and fibrosis trought enhancing of Nrf2 antioxidant signaling pathways. Cardiovasc Drugs Ther. 2012;26:457–65.PubMedCrossRefGoogle Scholar
  173. 173.
    Li XH, Li CY, Lu JM, Tian RB, Wei J. Allicin ameliorates cognitive deficits ageing-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Neurosci Lett. 2012;514:46–50.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Gebhardt R, Beck H, Wagner KG. Inhibition of cholesterol biosynthesis by allicin and ajoene in rat hepatocytes and HepG2 cells. Biochim Biophys Acta. 1994;121:57–62.CrossRefGoogle Scholar
  175. 175.
    Gupta N, Porter T. Garlic and garlic-derived compounds inhibit human squalene monooxygenase. J Nutr. 2001;131:1662–7.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Yip J, Shen Y, Berndt MC, Andrews RK. Primary platelet adhesion receptors. IUBMB Life. 2005;57:103–8.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Briggs WH, Xiao H, Parkin KL, Shen C, Goldman IL. Differential inhibition of human platelet aggregation by selected allium thiosulfinates. J Agric Food Chem. 2000;48:5731–5.PubMedCrossRefGoogle Scholar
  178. 178.
    Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A. 2007;104:17977–82.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Zoccali C, Catalano C, Rastelli S. Blood pressure control: hydrogen sulfide, a new gasotransmitter, takes stage. Nephrol Dial Transplant. 2009;24:1394–6.PubMedCrossRefGoogle Scholar
  180. 180.
    Tocque B, Delumeau I, Parker F, Maurier F, Multon MC, Schweighoffer F. Ras-GTPase activating protein (GAP): a putative effector for Ras. Cell Signal. 1997;9:153–8.PubMedCrossRefGoogle Scholar
  181. 181.
    Patya M. Allicin stimulates lymphocytes and elicits an antitumor effect: a possible role of p21ras. Int Immunol. 2004;16:275–81.PubMedCrossRefGoogle Scholar
  182. 182.
    Lang A, Lahav M, Sakhnini E, Barshack I, Fidder HH, Avidan B, Bardan E, Hershkoviz R, Bar-Meir S, Chowers Y. Allicin inhibits spontaneous and TNF-alpha induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cells. Clin Nutr. 2004;23:1199–208.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Haase H, Hieke N, Plum LM, Gruhlke MCH, Slusarenko AJ, Rink L. Impact of allicin on macrophage activity. Food Chem. 2012;134:141–8.CrossRefGoogle Scholar
  184. 184.
    Dirsch VM, Kiemer AK, Wagner H, Vollmar AM. Effect of allicin and ajoene, two compounds of garlic, on inducible nitric oxide synthase. Atherosclerosis. 1998;139:333–9.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Dipaolo JA, Carruthers C. The effect of allicin from garlic on tumor growth. Cancer Res. 1960;20:431–4.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Miron T, Wilchek M, Sharp A, Nakagawa Y, Naoi M, Nozawa Y, Akao Y. Allicin inhibits cell growth and induces apoptosis through the mitochondrial pathway in HL60 and U937 cells. J Nutr Biochem. 2008;19:524–35.PubMedCrossRefGoogle Scholar
  187. 187.
    Oommen S, Anto RJ, Srinivas G, Karunagaran D. Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur J Pharmacol. 2004;485:97–103.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Park SY, Cho SJ, Kwon HC, Lee KR, Rhee DK, Pyo S. Caspase-independent cell death by allicin in human epithelial carcinoma cells: involvement of PKA. Cancer Lett. 2005;224:123–32.PubMedCrossRefGoogle Scholar
  189. 189.
    Bat-Chen W, Golan T, Peri I, Ludmer Z, Schwartz B. Allicin purified from fresh garlic cloves induces apoptosis in colon cancer cells via Nrf2. Nutr Cancer. 2010;62:947–57.PubMedCrossRefGoogle Scholar
  190. 190.
    Loboda A, Was H, Jozkowicz A, Dulak J. Janus face of Nrf2-HO-1 axis in cancer—Friend in chemoprevention, foe in anticancer therapy. Lung Cancer. 2008;60:1–3.PubMedCrossRefGoogle Scholar
  191. 191.
    Niture SK, Jaiswal AK. Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem. 2012;287:9873–86.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Niture SK, Jaiswal AK. Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance. Free Radic Biol Med. 2013;57:119–31.PubMedCrossRefGoogle Scholar
  193. 193.
    Cha JH, Choi YJ, Cha SH, Choi CH, Cho WH. Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway. Oncol Rep. 2012;28:41–8.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Capurso
    • 1
  • Gaetano Crepaldi
    • 2
  • Cristiano Capurso
    • 3
  1. 1.Department of Internal MedicineSchool of Medicine, University of BariBariItaly
  2. 2.Department of Biomedical ScienceCNR Neuroscience InstitutePadovaItaly
  3. 3.Department of Medical and Surgical SciencesSchool of Medicine, University of FoggiaFoggiaItaly

Personalised recommendations