Advertisement

Fish

  • Antonio Capurso
  • Gaetano Crepaldi
  • Cristiano Capurso
Chapter
Part of the Practical Issues in Geriatrics book series (PIG)

Abstract

In Mediterranean diet fish has always had a primary role as an important source of animal protein. Fish provides a variety of nutrients, including protein and long-chain omega 3 polyunsaturated fatty acids (ω3, n-3 PUFAs), as well as micronutrients including selenium, iodine, potassium, vitamin D, and B-vitamins. Intakes of some of these micronutrients, including iodine and vitamin D, are frequently low in some population groups, which makes fish a valuable contributor to intakes of these components. It is recommended that two portions of fish a week should be consumed, one of which should be oily. This is because it is thought that long-chain n-3 PUFAs present in oil-rich fish and fish oil are associated with beneficial health outcomes.

References

  1. 1.
    Serhan CN, Dalli J, Colas RA, Winkler JW, Chiang N. Protectins and maresins: new pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta. 2015;1851:397–413.CrossRefPubMedGoogle Scholar
  2. 2.
    Gao F, Taha AY, Ma K, Chang L, Kiesewetter D, Rapoport SI. Aging decreases rate of docosahexaenoic acid synthesis-secretion from circulating unesterified α-linolenic acid by rat liver. Age. 2012;35:597–608.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bibus D, Lands B. Balancing proportions of competing omega-3 and omega-6 highly unsaturated fatty acids (HUFA) in tissue lipids. Prostaglandins Leukot Essent Fat Acids. 2015;99:19–23.CrossRefGoogle Scholar
  4. 4.
    Lands WE. n-3 fatty acids as precursors for active metabolic substances: dissonance between expected and observed events. J Intern Med Suppl. 1989;731:11–20.CrossRefPubMedGoogle Scholar
  5. 5.
    Smith WL. Nutritionally essential fatty acids and biologically indispensable cyclooxygenases. Trends Biochem Sci. 2008;33:27–37.CrossRefPubMedGoogle Scholar
  6. 6.
    Wada M, Delong CJ, Hong YH, Rieke CJ, Song I, Sidhu RS, Yuan C, Warnock M, Schmaier AH, Yokoyama C, Smyth EM, Wilson SJ, FitzGerald GA, Garavito RM, Sui de X, Regan JW, Smith WL. Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J Biol Chem. 2007;282:22254–66.CrossRefPubMedGoogle Scholar
  7. 7.
    Cleland LG, James MJ, Proudman SM. Fish oil: what the prescriber needs to know. Arthr Res Ther. 2006;8:202.CrossRefGoogle Scholar
  8. 8.
    Mickleborough T. Dietary omega-3 polyunsaturated fatty acid supplementation and airway hyperresponsiveness in asthma. J Asthma. 2005;42:305–14.CrossRefPubMedGoogle Scholar
  9. 9.
    Broughton KS, Johnson CS, Pace BK, Liebman M, Kleppinger KM. Reduced asthma symptoms with n-3 fatty acid ingestion are related to 5-series leukotriene production. Am J Clin Nutr. 1997;65:1011–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Lee HJ, Rao JS, Rapoport SI, Bazinet RP. Antimanic therapies target brain arachidonic acid signaling: lessons learned about the regulation of brain fatty acid metabolism. Prostaglandins Leukot Essent Fat Acids. 2007;77:239–46.CrossRefGoogle Scholar
  11. 11.
    Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, Imai Y. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell. 2013;153:112–25.CrossRefPubMedGoogle Scholar
  12. 12.
    Merched AJ, Ko K, Gotlinger KH, Serhan CN, Chan L. Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. FASEB J. 2008;22:3595–606.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Deng B, Wang CW, Arnardottir HH, Li Y, Cheng CY, Dalli J, Serhan CN. Maresin biosynthesis and identification of maresin 2, a new anti-inflammatory and pro-resolving mediator from human macrophages. PLoS One. 2014;9:e102362.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142:687–98.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hirasawa A, Tsumaya K, Awaji T, et al. Free fatty acids regulate gut incretin glucagonlike peptide-1 secretion through GPR120. Nat Med. 2005;11:90–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Burns RN, Moniri NH. Agonism with the omega-3 fatty acids a-linolenic acid and docosahexaenoic acid mediates phosphorylation of both the short and long isoforms of the human GPR120 receptor. Biochem Biophys Res Commun. 2010;396:1030–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Brown MD, Sacks DB. Protein scaffolds in MAP kinase signalling. Cell Signal. 2009;21:462–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Miller WE, Lefkowitz RJ. Expanding roles for b-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr Opin Cell Biol. 2001;13:139–45.CrossRefPubMedGoogle Scholar
  19. 19.
    Uozumi N, Kume K, Nagase T, et al. Role of cytosolic phospholipase A2 in allergic response and parturition. Nature. 1997;390:618–22.CrossRefPubMedGoogle Scholar
  20. 20.
    Sapirstein A, Bonventre JV. Specific physiological roles of cytosolic phospholipase A2 as defined by gene knockouts. Biochim Biophys Acta. 2000;1488:139–48.CrossRefPubMedGoogle Scholar
  21. 21.
    Fujishima H, Sanchez Mejia RO, Bingham CO 3rd, Lam BK, Sapirstein A, Bonventre JV, Austen KF, Arm JP. Cytosolic phospholipase A2 is essential for both the immediate and the delayed phases of eicosanoid generation in mouse bone marrow-derived mast cells. Proc Natl Acad Sci U S A. 1999;96:4803–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pawliczak R, Logun C, Madara P, Lawrence M, Woszczek G, Ptasinska A, Kowalski ML, Wu T, Shelhamer JH. Cytosolic phospholipase A2 Group IVa but not secreted phospholipase A2 Group IIA, V, or X induces interleukin-8 and cyclooxygenase-2 gene and protein expression through peroxisome proliferator-activated receptors c1 and 2 in human lung cells. J Biol Chem. 2004;279:48550–61.CrossRefPubMedGoogle Scholar
  23. 23.
    Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2 + -dependent translocation domain with homology to PKC and GAP. Cell. 1991;65:1043–51.CrossRefPubMedGoogle Scholar
  24. 24.
    Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 1993;72:269–78.CrossRefPubMedGoogle Scholar
  25. 25.
    Kramer RM, Roberts EF, Um SL, Borsch-Haubold AG, Watson SP, Fisher MJ, Jakubowski JA. p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2. J Biol Chem. 1996;271:27723–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Sharp JD, White DL, Chiou XG, et al. Molecular cloning and expression of human Ca2 + -sensitive cytosolic phospholipase A2. J Biol Chem. 1991;266:14850–3.PubMedGoogle Scholar
  27. 27.
    Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science. 2001;294:1871–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Giuliano F, Warner TD. Origins of prostaglandin E2: involvements of cyclooxygenase (COX)-1 and COX-2 in human and rat systems. J Pharmacol Exp Ther. 2002;303:1001–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Liu Y, Chen LY, Sokolowska M, Eberlein M, Alsaaty S, Martinez-Anton A, Logun C, Qi HY, Shelhamer JH. The fish oil ingredient, docosahexaenoic acid, activates cytosolic phospholipase A2 via GPR120 receptor to produce prostaglandin E2 and plays an anti-inflammatory role in macrophages. Immunology. 2014;143:81–95.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dyerberg J, Bang HO. Haemostatic function and platelet polyunsaturated fatty acids in eskimos. Lancet. 1979;2:433–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Dyerberg J, Bang HO, Hjorne N. Fatty acid composition of the plasma lipids in Greenland eskimos. Am J Clin Nutr. 1975;28:958–66.CrossRefPubMedGoogle Scholar
  32. 32.
    Dyerberg J, Bang HO, Stoffersen E, Moncada S, Vane JR. Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis? Lancet. 1978;1:117–9.CrossRefGoogle Scholar
  33. 33.
    Goodnight SH Jr, Harris WS, Connor WE. The effects of dietary omega 3 fatty acids on platelet composition and function in man: a prospective, controlled study. Blood. 1981;58:880–5.PubMedGoogle Scholar
  34. 34.
    Bays HE, Ballantyne CM, Kastelein JJ, Isaacsohn JL, Braeckman RA, Soni PN. Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the multi-center, plAcebo-controlled, randomized, double-blINd, 12-week study with an open-label extension [MARINE] trial). Am J Cardiol. 2011;108:682–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, McKenney JM, Grundy SM, Gill EA, Wild RA, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1 - executive summary. J Clin Lipidol. 2014;8:473–88.CrossRefPubMedGoogle Scholar
  36. 36.
    Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, Goldberg AC, Howard WJ, Jacobson MS, Kris-Etherton PM, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–333.CrossRefPubMedGoogle Scholar
  37. 37.
    Bays HE, Tighe AP, Sadovsky R, Davidson MH. Prescription omega-3 fatty acids and their lipid effects: physiologic mechanisms of action and clinical implications. Expert Rev Cardiovasc Ther. 2008;6:391–409.CrossRefPubMedGoogle Scholar
  38. 38.
    Le Jossic-Corcos C, Gonthier C, Zaghini I, Logette E, Shechter I, Bournot P. Hepatic farnesyl diphosphate synthase expression is suppressed by polyunsaturated fatty acids. Biochem J. 2005;385:787–94.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci U S A. 1998;95:5987–92.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Harris WS, Bulchandani D. Why do omega-3 fatty acids lower serum triglycerides? Curr Opin Lipidol. 2006;17:387–93.CrossRefPubMedGoogle Scholar
  41. 41.
    Park Y, Harris WS. Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J Lipid Res. 2003;44:455–63.CrossRefPubMedGoogle Scholar
  42. 42.
    Khan S, Minihane AM, Talmud PJ, Wright JW, Murphy MC, Williams CM, Griffin BA. Dietary long-chain n-3 PUFAs increase LPL gene expression in adipose tissue of subjects with an atherogenic lipoprotein phenotype. J Lipid Res. 2002;43:979–85.PubMedGoogle Scholar
  43. 43.
    Mason RP, Jacob RF. Eicosapntaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism. Biochim Biophis Acta. 2015;1848:502–9.CrossRefGoogle Scholar
  44. 44.
    Willett WC, Stampfer MJ, Manson JE, Colditz GA, Speizer FE, Rosner BA, Sampson LA, Hennekens CH. Intake of trans fatty acids and risk of coronary heart disease among women. Lancet. 1993;341:581–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Oomen CM, Ocke MC, Feskens EJ, van Erp-Baart MA, Kok FJ, Kromhout D. Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen elderly study: a prospective population-based study. Lancet. 2001;357:746–51.CrossRefPubMedGoogle Scholar
  46. 46.
    Charnock JS. Dietary fats and cardiac arrhythmia in primates. Nutrition. 1994;10:161–9.PubMedGoogle Scholar
  47. 47.
    McLennan PL, Bridle TM, Abeywardena MY, et al. Dietary lipid modulation of ventricular fibrillation threshold in the marmoset monkey. Am Heart J. 1992;123:1555–61.CrossRefPubMedGoogle Scholar
  48. 48.
    Lemaitre RN, King IB, Raghunathan TE, Pearce RM, Weinmann S, Knopp RH, Copass MK, Cobb LA, Siscovick DS. Cell membrane trans-fatty acids and the risk of primary cardiac arrest. Circulation. 2002;105:697–701.CrossRefPubMedGoogle Scholar
  49. 49.
    McLennan PL, Abeywardena MY, Charnock JS. The influence of age and dietary fat in an animal model of sudden cardiac death. Aust NZ J Med. 1989;19:1–5.CrossRefGoogle Scholar
  50. 50.
    Charnock JS, Abeywardena MY, Poletti VM, et al. Differences in fatty acid composition of various tissues of the marmoset monkey after different lipid supplemented diets. Comp Biochem Physiol Comp Physiol. 1992;101:387–93.CrossRefPubMedGoogle Scholar
  51. 51.
    McLennan PL, Bridle TM, Abeywardena MY, Charnock JS. Comparative efficacy of n23 and n26 polyunsaturated fatty acids in modulating ventricular fibrillation threshold in marmoset monkeys. Am J Clin Nutr. 1993;58:666–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Billman GE, Hallaq H, Leaf A. Prevention of ischemia-induced ventricular fibrillation by n23 fatty acids. Proc Natl Acad Sci U S A. 1994;91:4427–30.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Siscovick DS, Raghunathan TE, King I, et al. Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA. 1995;274:1363–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Leaf A. The electrophysiologic basis for the antiarrhythmic actions of polyunsaturated fatty acids. Eur Heart J. 2001;22:D98–D105.CrossRefGoogle Scholar
  55. 55.
    Siscovick DS, Raghunathan T, King I, Weinmann S, Bovbjerg VE, Kushi L, Cobb LA, Copass MK, Psaty BM, Lemaitre R, Retzlaff B, Knopp RH. Dietary intake of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. Am J Clin Nutr. 2000;71(1 Suppl):208S–12S.CrossRefPubMedGoogle Scholar
  56. 56.
    Christensen JH. N-3 fatty acids and the risk of sudden cardiac death. Emphasis on heart rate variability. Dan Med Bull. 2003;50:347–67.PubMedGoogle Scholar
  57. 57.
    Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, Ma J. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med. 2002;346:1113–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Jouven X, Charles MA, Desnos M, Ducimetiere P. Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation. 2001;104:756–61.CrossRefPubMedGoogle Scholar
  59. 59.
    Albert CM, Hennekens CH, O’Donnell CJ, et al. Fish consumption and risk of sudden cardiac death. JAMA. 1998;279:23–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Kang JX, Leaf A. Antiarrhythmic effects of polyunsaturated fatty acids: recent studies. Circulation. 1996;94:1774–80.CrossRefPubMedGoogle Scholar
  61. 61.
    Billman GE, Kang JX, Leaf A. Prevention of ischemia-induced ventricular arrhythmias by dietary pure n-3 polyunsaturated fatty acids in dogs. Circulation. 1999;99:2452–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Mozaffarian D, Rimm E. Fish intake, contaminants, and human health. Evaluating the risks and the benefits. J Am Med Assoc. 2006;296:1885–99.CrossRefGoogle Scholar
  63. 63.
    De Goede J, Geleijnse JM, Boer JMA, Kromhout D, Verschuren WMM. Marine (n-3) fatty acids, fish consumption and 10-year risk of fatal and nonfatal coronary heart disease in a large population of Dutch adults with a low fish intake. J Nutr. 2010;140:1023–8.  https://doi.org/10.3945/jn.109.119271.CrossRefPubMedGoogle Scholar
  64. 64.
    Skeaff C, Miller J. Dietary fat and coronary heart disease: summary of evidence from prospective cohort and randomised controlled trials. Annals of. Nutr Metab. 2009;55:173–201.CrossRefGoogle Scholar
  65. 65.
    He K, Song Y, Daviglus MU, Liu K, Van Horn L, Dyer AR, Golbourt U, Greenland P. Fish consumption and incidence of stroke. A meta-analysis of cohort studies. Stroke. 2004;35:1538–42.CrossRefPubMedGoogle Scholar
  66. 66.
    Chowdhury R, Stevens S, Gorman D, Pan A, Warnakula S, Chowdhury S, Ward H, Johnson L, Crowe F, Hu FB. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. Br Med J. 2012;345:e6698.CrossRefGoogle Scholar
  67. 67.
    WCRF & AICR (World Cancer Research Fund & American Institute for Cancer Research). Food, nutrition, physical activity and the prevention of cancer: a global perspective. Washington, DC: WCRF & AICR; 2007.Google Scholar
  68. 68.
    Farrow B, Evers B. Inflammation and the development of pancreatic cancer. Surg Oncol. 2002;10:153–69.CrossRefPubMedGoogle Scholar
  69. 69.
    Qin B, Xun P, He K. Fish or long-chain (n-3) PUFA intake is not associated with pancreatic cancer risk in a meta-analysis and systematic review. J Nutr. 2012;142:1067–73.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rohrmann S, Linseisen J, Nothlings U, Overvad K, Egeberg R, Tjønneland A, Boutron-Ruault MC, Clavel-Chapelon F, et al. Meat and fish consumption and risk of pancreatic cancer: results from the European prospective investigation into cancer and nutrition. Int J Cancer. 2012;132:617–24.CrossRefPubMedGoogle Scholar
  71. 71.
    Kremmyda L-S, Vlachava M, Noakes P, Diaper ND, Miles EA, Calder PC. Atopy risk in infants and children in relation to early exposure to fish, oily fish, or long-chain omega-3 fatty acids: a systematic review. Clin Rev Allergy Immunol. 2011;41:36–66.CrossRefPubMedGoogle Scholar
  72. 72.
    Alm B, Aberg N, Erdes L, Möllborg P, Pettersson R, Norvenius SG, Goksör E, Wennergren G. Early introduction of fish decreases the risk of eczema in infants. Arch Dis Child. 2009;94:11–5.CrossRefPubMedGoogle Scholar
  73. 73.
    BNF (British Nutrition Foundation). Nutrition and Development. Short- and long-term consequences for health. Oxford, UK: Wiley Blackwell; 2013.CrossRefGoogle Scholar
  74. 74.
    Morris M, Evans D, Bienias J, Tangney CC, Bennett DA, Wilson RS, Aggarwal N, Schneider J. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol. 2003;60:940–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Schaefer E, Bongard V, Beiser A, Lamon-Fava S, Robins SJ, Au R, Tucker KL, Kyle DJ, Wilson PW, Wolf PA. Plasma phophatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham heart study. Arch Neurol. 2006;63:1545–50.CrossRefPubMedGoogle Scholar
  76. 76.
    Lopez L, Kritz-Silverstein D, Barrett-Connor E. High dietary and plasma levels of the omega-3 fatty acid docosahexaenoic acid are associated with decreased dementia risk: the rancho Bernardo study. J Nutr Health Aging. 2011;15:25–31.CrossRefPubMedGoogle Scholar
  77. 77.
    Devore E, Grodstein F, van Rooij F, Hofman A, Rosner B, Stampfer MJ, Witteman JC, Breteler MM. Dietary intake of fish and omega-3 fatty acids in relation to long-term dementia risk. Am J Clin Nutr. 2009;90:170–6.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kroger E, Verreault R, Carmichael PH, Lindsay J, Julien P, Dewailly E, Ayotte P, Laurin D. Omega-3 fatty acids and risk of dementia: the Canadian study of health and aging. Am J Clin Nutr. 2009;90:184–92.CrossRefPubMedGoogle Scholar
  79. 79.
    Morris M, Evans D, Tangney C, Bienias JL, Wilson RS. Fish consumption and cognitive decline with age in a large community study. Arch Neurol. 2005;62:1849–53.CrossRefPubMedGoogle Scholar
  80. 80.
    Kalmijn S, Feskens E, Launer L, Kromhout D. Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. Am J Epidemiol. 1997;145:33–41.CrossRefPubMedGoogle Scholar
  81. 81.
    Kesse-Guyot E, Péneau S, Ferry M, Jeandel C, Hercberg S, Galan P. SU.VI.MAX 2 Research Group. Thirteen-year prospective study between fish consumption, long-chain n-3 fatty acids intakes and cognitive function. J Nutr Health Aging. 2011;15:115–20.CrossRefPubMedGoogle Scholar
  82. 82.
    Diet PF. Bone health. Nutr Bull. 2004;29:99–110.CrossRefGoogle Scholar
  83. 83.
    Farina E, Kiel D, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL. Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham osteoporosis study. Am J Clin Nutr. 2011;93:1142–51.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Orchard T, Cauley J, Frank GC, Neuhouser ML, Robinson JG, Snetselaar L, Tylavsky F, Wactawski-Wende J, Young AM, Lu B, Jackson RD. Fatty acid consumption and risk of fracture in the Women’s health initiative. Am J Clin Nutr. 2010;92(145):2–60.Google Scholar
  85. 85.
    Chen Y, Ho S, Lam S. Higher sea fish intake is associated with greater bone mass and lower osteoporosis risk in postmenopausal Chinese women. Osteoporos Int. 2010;21:939–46.CrossRefPubMedGoogle Scholar
  86. 86.
    Kris-Etherton PM, Harris WS, Appel LJ. Omega-3 fatty acids and cardiovascular disease: new recommendations from the American Heart Association. Arterioscler Thromb Vasc Biol. 2003;23(2):151.CrossRefPubMedGoogle Scholar
  87. 87.
    Harris WS, Kris-Etherton PM, Harris KA. Intakes of long-chain omega-3 fatty acid associated with reduced risk for death from coronary heart disease in healthy adults. Curr Atheroscler Rep. 2008;10:503–9.CrossRefPubMedGoogle Scholar
  88. 88.
    GISSI-Prevenzione Investigators. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet. 1999;354:447–55.CrossRefGoogle Scholar
  89. 89.
    Burr M, Ashfield-Watt P, Dunstan F, Fehily AM, Breay P, Ashton T, Zotos PC, Haboubi NA, Elwood PC. Lack of benefit of dietary advice to men with angina: results of a controlled trial. Eur J Clin Nutr. 2003;57:193–200.CrossRefPubMedGoogle Scholar
  90. 90.
    Clark JD, Schievella AR, Nalefski EA, Lin LL. Cytosolic phospholipase A2. J Lipid Mediat Cell Signal. 1995;12:83–117.CrossRefPubMedGoogle Scholar
  91. 91.
    Marchioli R, Barzi F, Bomba E, Chieffo C, Di Gregorio D, Di Mascio R, et al. on behalf of the GISSI-Prevenzione Investigators. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction. Time course analysis of the results of the Gruppo Italiano per lo Studio della Sopravivenza nell’Infarto Miocardico (GISSI)-Prevenzione. Circulation. 2002;105:1897–903.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Capurso
    • 1
  • Gaetano Crepaldi
    • 2
  • Cristiano Capurso
    • 3
  1. 1.Department of Internal MedicineSchool of Medicine, University of BariBariItaly
  2. 2.Department of Biomedical ScienceCNR Neuroscience InstitutePadovaItaly
  3. 3.Department of Medical and Surgical SciencesSchool of Medicine, University of FoggiaFoggiaItaly

Personalised recommendations