Legumes and Pulses

  • Antonio Capurso
  • Gaetano Crepaldi
  • Cristiano Capurso
Part of the Practical Issues in Geriatrics book series (PIG)


Grain legumes, also called pulses, are plants belonging to the family Leguminosae (alternatively Fabaceae) which are grown primarily for their edible seeds.


  1. 1.
    Khokhar S, Owusu Apenten RK. The role of food, agriculture, forestry and fisheries in human nutrition. In: Squires VR, editor. Antinutritional factors in food legumes and effects of processing, vol. IV. Paris: Encyclopedia of Life Support Systems (EOLSS); 2002–2017.Google Scholar
  2. 2.
    Wahlqvist ML, Hsu-Hage BH-H, Kouris-Blazos A, Lukito W. Food habits in later life. A cross cultural study. Bethesda, MD: Asia Pacific Journal of Clinical Nutrition; 1995.Google Scholar
  3. 3.
    Tovar J, Björck M, Asp NG. Incomplete digestion of legume starches in rats: a study of precookeed flours containing retrograded and physically inaccessible starch fractions. J Nutr. 1992;122:1500–7.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Englyst HN, HN CH. Digestion of polysaccharides of potato in the small intestine of man. Am J Clin Nutr. 1987;45:423–31.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Faisant N, Gallant DJ, Bouchet B, Champ M. Banana starch breakdown in the human small intestine studied by electron microscopy. Eur J Clin Nutr. 1995;49:98–104.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Noah L, Guillon F, Bouchet B, Buleon A, Molis C, Gratas M, Champ M. Digestion of carbohydrate from white beans (Phaseolus vulgaris L.) in healthy humans. J Nutr. 1998;128:977–85.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Asp NG, Van Amelsvoort JMM, Hautvast JGA. Nutritional implications of resistant starch. Nutr Res Rev. 1996;9:1–31.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Cassidy A, Bingham S, Cummings JH. Starch intake and colorectal cancer risk: and international comparison. Br J Cancer. 1994;69:937–42.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    De Deckere EAM, Kloots WJ, Van Amelsvoort JMM. Both raw and retrograded starch decrease serum triacylglycerol concentration and fat accretion in the rat. Br J Nutr. 1995;73:287–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Jenkins DJA, Wolever TMS, Collier GR, Ocana A, Rao AV, Buckley G, Lam Y, Mayer A, Tompson LU. Metabolic effects of a low-glycemic-index diet. Am J Clin Nutr. 1987;46:968–75.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Velasco ZI, Rascon A, Tovar J. Enzymic availability of starch in cooked black beans (Phaseolus vulgaris L.) and cowpeas (Vigna spp.). J Agric Food Chem. 1997;45:1548–51.CrossRefGoogle Scholar
  12. 12.
    Bravo L, Siddhuraju P, Saura-Calixto F. Composition of underexploited Indian pulses. Comparison with common legumes. Food Chem. 1999;64:185–92.CrossRefGoogle Scholar
  13. 13.
    Melito C, Tovar J. Cell walls limit in vitro protein digestibility in processed legumes. Food Chem. 1995;53:305–7.CrossRefGoogle Scholar
  14. 14.
    Würsch P, Del Vedovo S, Koellreuter B. Cell structure and starch nature as key determinants of the digestion rate of starch in legumes. Am J Clin Nutr. 1986;43:25–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Tundis R, Loizzo MR, Menichini F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini-Rev Med Chem. 2010;10:315–31.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    McDougall GJ, Stewart D. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors. 2005;23:189–95.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Koh LW, Wong LL, Loo YY, Kasapis S, Huang D. Evaluation of different teas against starch digestibility by mammalian glycosidases. J Agric Food Chem. 2010;58:148–54.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Barret ML, Udani JK. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutr J. 2011;10:24.CrossRefGoogle Scholar
  19. 19.
    Markiewicz LH, Honke J, Haros M, Świątecka D, Wróblewska B. Diet shapes the ability of human intestinal microbiota to degrade phytate—in vitro studies. J Appl Microbiol. 2013;115:247–59.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Haros M, Carlsson NG, Almgren A, Larsson-Alminger M, Sandberg AS, Andlid T. Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential. Int J Food Microbiol. 2009;135:7–14.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC. Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell. 2000;102:721–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Graf E, Empson KL, Eaton JW. Phytic acid. A natural antioxidant. J Biol Chem. 1987;262:11647–50.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Grases F, Costa-Bauzá A. Phytate (IP6) is a powerful agent for preventing calcifications in biological fluids: usefulness in renal lithiasis treatment. Anticancer Res. 1999;19:3717–22.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Vucenik I, Shamsuddin AM. Protection against cancer by dietary IP6 and inositol. Nutr Cancer. 2006;55:109–25.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Jenab M, Thompson LU. The influence of phytic acid in wheat bran on early biomarkers of colon carcinogenesis. Carcinogenesis. 1998;19:1087–92.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Shamsuddin AM, Wah A. Inositol hexaphosphate inhibits large intestinal cancer in F344 rats 5 months after induction by azoxymethane. Carcinogenesis. 1989;10:625–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Vucenik I, Yang GY, Shamsuddin AM. Inositol hexaphosphate and inositol inhibits DMBA-induced rat mammary cancer. Carcinogenesis. 1995;16:1055–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Fox CH, Eberl M. Phytic acid (IP6), novel broad-spectrum anti-neoplastic agent: a systematic review. Complement Ther Med. 2002;10:229–34.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Singh RP, Agarwal R. Prostate cancer and inositol hexaphosphate: efficacy and mechanisms. Anticancer Res. 2005;25:2891–904.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Bizzarri M, Dinicola S, Bevilacqua A, Cucina A. Broad Spectrum anticancer activity of Myo-inositol and inositol Hexakisphosphate. Int J Endocrinol. 2016;2016:5616807.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Vicia faba (Broad bean). Biological Records Centre and Botanical Society of Britain and Ireland.
  32. 32.
    Swenson AA. Foods Jesus ate and how to grow them. New York, NY: Skyhorse Publishing; 2013.Google Scholar
  33. 33.
    Hornykiewicz O. A brief history of levodopa. J Neurol. 2010;257(Suppl 2):S249–52.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Okumura K, Hosoya T, Kawarazaki K, Izawa N, Kumazawa S. Antioxidant activity of phenolic compounds from fava bean sprouts. J Food Sci. 2016;8:C1394–8.CrossRefGoogle Scholar
  35. 35.
    Siah SD, Konczak I, Agboola S, Wood JA, Blanchard CL. In vitro investigations of the potential health benefits of Australian-grown faba beans (Vicia faba L.): chemopreventative capacity and inhibitory effects on the angiotensin-converting enzyme, α-glucosidase and lipase. Br J Nutr. 2012;108(Suppl1):S123–34.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Culpeper, Nicholas. Chick-Pease, or Cicers. The Complete Herbal (1652, originally titled The English Physitian).Google Scholar
  37. 37.
    Internet Archive Way Back Machine. Introduction: Chickpea. International Center for Agricultural Research in the Dry Areas.Google Scholar
  38. 38.
    Milán-Carrillo J, Valdéz-Alarcón C, Gutiérrez-Dorado R, Cárdenas-Valenzuela OG, Mora-Escobedo R, Garzón-Tiznado JA, Reyes-Moreno C. Nutritional properties of quality protein maize and chickpea extruded based weaning food. Plant Foods Hum Nutr. 2007;62:31–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Nutrition facts for Chickpeas (garbanzo beans, bengal gram), mature seeds, cooked, boiled, without salt, 100 g, USDA Nutrient Database, version SR-21. Conde Nast. 2014.Google Scholar
  40. 40.
    Yang WX, Liang ZS, Wang SW, Zhang L, Xie YH, He ZM. Effect of genistein to FPG and blood lipids on type 2 diabetes rats. J Northwest A & F Univ (Nat Sci Ed). 2009;37:1–6.Google Scholar
  41. 41.
    Li Y. The research about extracting, separating, purifying isoflavone and saponin from Cicer arietium L. and their decreasing blood glucose, regulating blood lipid effect. Master’s Thesis. Wulumuqi, China: Xin Jiang Agricultural University; 2007.Google Scholar
  42. 42.
    Ayumi H, Katsuhiro T, Kosuke A, Soichiro N, Norio K, Kazuya Y. Genistein stimulates the insulin-dependent signaling pathway. Front Biosci. 2011;3:1534–40.Google Scholar
  43. 43.
    Evans BAJ, Griffiths K, Morton MS. Inhibition of 5α-reductase in genital skin fibroblasts and prostate tissue by dietary lignans and isoflavonoids. J Endocrinol. 1995;147:295–302.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Khan SI, Zhao J, Khan IA, et al. Potential utility of natural products as regulators of breast cancer-associated aromatase promoters. Reprod Biol Endocrinol. 2011;9:1–10.CrossRefGoogle Scholar
  45. 45.
    Patisaul HB, Jefferson W. The pros and cons of phytoestrogens. Front Neuroendocrinol. 2010;3:400–19.CrossRefGoogle Scholar
  46. 46.
    Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol. 2014;92:73–89.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Rasbach KA, Schnellmann RG. Isoflavones promote mitochondrial biogenesis. J Pharmacol Exp Ther. 2008;325:536–43.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Peterson G, Barnes S. Genistein and biochanin a inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation. Prostate. 1993;22:335–45.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kole L, Giri B, Manna SK, Pal B, Ghosh S. Biochanin-a, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NFκB nuclear translocation. Eur J Pharmcol. 2011;653(1–3):8–15.CrossRefGoogle Scholar
  50. 50.
    Wang Y, Man Gho W, Chan FL, Chen S, Leung LK. The red clover (Trifolium pratense) isoflavone biochanin a inhibits aromatase activity and expression. Br J Nutr. 2008;99:303–10.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kaczmarczyk-Sedlak I, Wojnar W, Zych M, Ozimina-Kamińska E, Taranowicz J, Siwek A. Effect of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. vEvid Based Complement Alternat Med. 2013;2013:457052.Google Scholar
  52. 52.
    Banu J, Varela E, Fernandes G. Alternative therapies for the prevention and treatment of osteoporosis. Nutr Rev. 2012;70:22–40.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bedell S, Nachtigall M, Naftolin F. The pros and cons of plant estrogens for menopause. J Steroid Biochem Mol Biol. 2014;139:225–36.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zhang DW, Cheng Y, Wang NL, Zhang JC, Yang MS, Yao XS. Effects of total flavonoids and flavonol glycosides from Epimedium Koreanum Nakai on the proliferation and differentiation of primary osteoblasts. Phytomedicine. 2008;15:55–61.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Al-Anazi AF, Qureshi VF, Javaid K, Qureshi S. Preventive effects of phytoestrogens against postmenopausal osteoporosis as compared to the available therapeutic choices: an overview. J Nat Sci Bio Med. 2011;2:154–63.CrossRefGoogle Scholar
  56. 56.
    Sunita P, Pattanayak SP. Phytoestrogens in postmenopausal indications: a theoretical perspective. Pharmacogn Rev. 2011;5:41–7.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Atkinson C, Compston JE, Day NE, Dowsett M, Bingham SA. The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2004;79:326.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Zohary D, Hopf M. Domestication of plants in the old World. 3rd ed. Oxford: Oxford University Press; 2000.Google Scholar
  59. 59.
    Hood-Niefer SD, Warkentin TD, Chibbar RN, Vandenberg A, Tyler RT. Effect of genotype and environment on the concentrations of starch and protein in, and the hysicochemical properties of starch from, field pea and fababean. J Sci Food Agric. 2012;92:141–50.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Tosh SM, Yada S. Dietary fibres in pulse seeds and fractions: characterization, functional attributes, and applications. Food Res Int. 2010;43:450–60.CrossRefGoogle Scholar
  61. 61.
    Grosjean F. Combining peas for animal nutrition. In: Hebblethwaite PD, Heath MC, Dawkins TCK, editors. The pea crop: a basis for improvement. London: Butterworths; 1985. p. 453–62.CrossRefGoogle Scholar
  62. 62.
    Norton G, Bliss FA, Bressani R. Biochemical and nutritional attributes of grain legumes. In: Summerfield RJ, Roberts EH, editors. Grain legume crops. London: Collins; 1985. p. 73–114.Google Scholar
  63. 63.
    Salunke DK, Kadam SS, Chavan JK. Chemical composition. In: Postharvest biotechnology of food legumes. Boca Raton, FL: CRC Press; 1985. p. 29–52.Google Scholar
  64. 64.
    Savage GP, Deo S. The nutritional value of peas (Pisum sativum). A literature review. Nutr Abstr Rev Ser A: Human Exp Nutr. 1989;59:65–87.Google Scholar
  65. 65.
    Wang N, Daun JK. The chemical composition and nutritive value of Canadian pulses. Winnipeg: Canadian Grain Commission; 2004.Google Scholar
  66. 66.
    Dostalovà R, Horàcek J, Hasalovà I, et al. Study of resistant starch (RS) content in pea during maturation. Czech J Food Sci. 2009;27:S120–4.CrossRefGoogle Scholar
  67. 67.
    Tömösközi S, Lásztity R, Haraszi R, Baticz O. Isolation and study of the functional properties of pea proteins. Nahrung/Food. 2001;45:399–401.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Abete I, Parra D, Martinez JA. Legume-, fish-, orhigh-protein-based hypocaloric diets: effects on weight loss and mitochondrial oxidation in obese men. J Med Food. 2009;12:100–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Roy F, Boye JI, Simpson BK. Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Res Int. 2010;43:432–42.CrossRefGoogle Scholar
  70. 70.
    Tahir R, Ellis PR, Bogracheva TY, Meares-Taylor C, Butterworth PJ. Study of the structure and properties of native and dydrothermally processed wild-type, lam and r variant pea starches that affect amylolysis of these starches. Biomacromolecules. 2011;12:123–33.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Chung H-J, Liu Q, Hoover R. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties, and nutritional fractions of pea, lentil, and navy bean starches. Food Res Int. 2010;43:501–8.CrossRefGoogle Scholar
  72. 72.
    Trinidad TP, Mallillin AC, Loyola AS, Sagum RS, Encabo RR. The potential health benefits of legumes as a good source of dietary fibre. Br J Nutr. 2010;103:569–74.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Chen WJL, Anderson JW, Jenkins DJA. Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol-fed rats. Proc Soc Exp Biol Med. 1984;175:215–8.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Fernando WMU, Hill JE, Zello GA, et al. Diets supplemented with chickpea or its main oligosaccharide component raffinose modify fecal microbial composition in healthy adults. Benefic Microbes. 2010;1:197–207.CrossRefGoogle Scholar
  75. 75.
    Campos-Vega R, Loarca-Pina G, Oomah BD. Minor components of pulses and their potential impact on human health. Food Res Int. 2010;43:461–82.CrossRefGoogle Scholar
  76. 76.
    Duenãs M, Estrella I, Hernandez T. Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (Pisum sativum L.). Eur Food Res Technol. 2004;219:116–23.CrossRefGoogle Scholar
  77. 77.
    Pownall TL, Udenigwe CC, Aluko RE. Amino acid composition and antioxidant properties of pea seed ( Pisum sativum L.) enzymatic protein hydrolysate fractions. J Agric Food Chem. 2010;58:4712–8.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Marinangeli CP, Kassis AN, Jones PJ. Glycemic responses and sensory characteristics of whole yellow pea flour added to novel functional foods. J Food Sci. 2009;74:S385–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Marinangeli CP, Jones PJ. Whole and fractionated yellow pea flours reduce fasting insulin and insulin resistance in hypercholesterolaemic and overweight human subjects. Br J Nutr. 2011;105:110–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Lunde MS, Hjellset VT, Holmboe-Ottesen G, et al. Variations in postprandial blood glucose responses andsatiety after intake of three types of bread. J Nutr Metab. 2011;2011:437587.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Slavin JL. Position of the American dietetic association: health implications of dietary fiber. J Am Diet Assoc. 2008;108:1716–31.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Sandström B, Hansen LT, Sørensen A. Pea fiber lowers fasting and postprandial blood triglyceride concentrations in humans. J Nutr. 1994;124:2386–96.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Hermsdorff HM, Zulet MA, Abete I, Martinez JR. A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight obese subjects. Eur J Nutr. 2011;50:61–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Dahl WJ, Whiting SJ, Healey AD, Zello GA, Hildebrandt SL. Increased stool frequency and fecal output occurs when finely processed pea hull fiber is added to usual foods consumed by elderly long term care residents. J Am Diet Assoc. 2003;103:1199–202.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Flogan C, Dahl WJ. Fiber fortification improves gastrointestinal function and decreases energy intake in children with a history of constipation. Infant Child Adolescent Nutr. 2010;2:312–7.CrossRefGoogle Scholar
  86. 86.
    Swiatecka D, Kostyra H, Swiatecki A. Impact of glycosylated pea proteins on the activity of free-swimming and immobilized bacteria. J Sci Food Agric. 2010;90:1837–45.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Swiatecka D, Narbad A, Ridgway KP, Kostyra H. The study on the impact of glycosylated pea proteins on human intestinal bacteria. Int J Food Microbiol. 2011;145:267–72.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Troszynska A, Ciska E. Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum Sativum L.) and their total antioxidant activity. Czech J Food Sci. 2002;20:15–22.CrossRefGoogle Scholar
  89. 89.
    Hagerman AE, Ried KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High molecular weight plant polyphenolics (tannins) as antioxidants. J Agric Food Chem. 1998;46:1887–92.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    United States Department of Agriculture (USDA). USDA National Nutrient Database for Standard Reference, Release 23; 2011.Google Scholar
  91. 91.
    Vidal-Valverde C, Frias J, Sierra I, Blazquez IF, Lambein F, Kuo YH. New functional legume foods by germination: effect on the nutritive value of beans, lentils and peas. Eur Food Res Technol. 2002;215:472–7.CrossRefGoogle Scholar
  92. 92.
    Padovani RM, Lima DM, Colugnati FAB, Rodriguez-Amaya DLB. Comparison of proximate, mineral and vitamin composition of common Brazilian and US food. J Food Compos Anal. 2007;20:733–8.CrossRefGoogle Scholar
  93. 93.
    Issa AY, Volate SR, Wargovich MJ. The role of phytochemicals in inhibition of cancer and inflammation: new directions and perspectives. J Food Compos Anal. 2006;19:405–19.CrossRefGoogle Scholar
  94. 94.
    Zia-ur-Rehman Salariya AM. The effects of hydrothermal processing on antinutrients, protein and starch digestibility of food legumes. Int J Food Sci Technol. 2005;40:695–700.CrossRefGoogle Scholar
  95. 95.
    Kalogeropoulos N, Chiou A, Ioannou M, Karathanos VT, Hassapidou M, Andrikopoulos NK. Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem. 2010;121:682–90.CrossRefGoogle Scholar
  96. 96.
    Xu B, Chang SKC. Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 lentils grown in the Northern United States. J Agric Food Chem. 2011;58:1509–17.CrossRefGoogle Scholar
  97. 97.
    Güclü-Üstündag Ö, Mazza G. Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 2007;47:231–58.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Quiroga AV, Barrio DA, Anon MC. Amaranth lectin presents potential antitumor properties. IWT–Food Sci Technol. 2015;60:478–85.Google Scholar
  99. 99.
    Finkina KI, Shramova EI, Tagaev AA, Ovchinnikova TV. A novel defensin from the lentil (lens Culinaris) seeds. Biochem Biophys Res Commun. 2008;371:860–5.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Barrera GJ, Sanchez G, Gonzalez JE. Trefoil factor 3 isolated from human breast milk downregulates cytokines (IL8 and IL6) and promotes human beta defensin (hBD2 and hBD4) expression in intestinal epithelial cells HT-29. Bosn J Basic Med Sci. 2012;12:256–64.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Philpott MP. Defensins and acne. Mol Immunol. 2003;40:457–62.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, Shen B, Schaeffeler E, Schwab M, Linzmeier R, Feathers RW, Chu H, Lima H, Fellermann K, Ganz T, Stange E, Bevins CL. Reduced Paneth cell α-defensins in ileal Crohn’s disease. Proc Natl Acad Sci. 2005;102(50):18129–34.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Lajolo FM, Genovese M. Nutritional significance of lectins and enzyme inhibitors from legumes. J Agric Food Chem. 2002;50:6592–8.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Ramdath D, Renwick S, Duncan AM. The role of pulses in the dietary management of diabetes. Can J Diabetes (Review). 2016;40:355–63.CrossRefGoogle Scholar
  105. 105.
    Queiroz-Monici KS, Costa GEA, Silva N, Reis SM, Oliveira AC. Bifidogenic effect of dietary fibre and resistant starch from leguminous on the intestinal microbiota of rats. Nutrition. 2005;21:602–8.CrossRefGoogle Scholar
  106. 106.
    Hernandez-Salazar M, Osorio-Diaz P, Loarca-Pina G, ReynosoCamacho R, Tovar J, Bello-Perez LA. In vitro fermentability and antioxidant capacity of the indigestible fraction of cooked black beans (Phaseolus vulgaris L.), lentils (Lens culinaris L.) and chickpeas (Cicer arietinum L.). J Sci Food Agric. 2010;90:1417–22.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Bednar GE, Patil AR, Murray SM, Grieshop CM, Merchen NR, GCJ F. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model. J Nutr. 2001;131:276–86.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Stephen AM, Dahl WJ, Sieber GM, Blaricom JA, Morgan DR. Effect of green lentils on colonic function, nitrogen balance, and serum lipids in healthy human subjects. Am J Clin Nutr. 1995;62:1–7.CrossRefGoogle Scholar
  109. 109.
    Pellegrini N, Serafini M, Salvatore S, Rio DD, Bianchi M, Brighenti F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res. 2006;50:1030–8.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Xu BJ, Chang SKC. Effect of soaking, boiling, and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chem. 2008;110:1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2.Google Scholar
  112. 112.
    Anderson JW, Major AW. Pulses and lipemia, short- and long-term effect: potential in the prevention of cardiovascular disease. Br J Nutr. 2002;88:S263–71.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Shams H, Tahbaz F, Entezari M, Abadi A. Effects of cooked lentils on glycaemic control and blood lipids of patients with type 2 diabetes. ARYA Athero J. 2008;3:215–8.Google Scholar
  114. 114.
    Kingman SM. The influence of legume seeds on human plasma lipid concentrations. Nutr Res Rev. 1991;4:97–123.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Duane WC. Effects of legume consumption on serum cholesterol, biliary lipids, and sterol metabolism in humans. J Lipid Res. 1997;38:1120–8.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Bazzano LA, Thompson AM, Tees MT, Nguyen CH, Winham DM. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2009;21:94–103.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Rizkalla SW, Bellisle F, Slama G. Health benefits of low glycaemic index foods, such as pulses, in diabetic patients and healthy individuals. Br J Nutr. 2002;88:S255–62.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Venn BJ, Mann JI. Cereal grains, legumes and diabetes. Eur J Clin Nutr. 2004;58:1443–146.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Al-Tibi AMH, Takruri HR, Ahmad MN. Effect of dehulling and cooking of lentils (Lens culinaris L.) on serum glucose and lipoprotein levels in streptozotocin-induced diabetic rats. Malays J Nutr. 2010;16:83–92.Google Scholar
  120. 120.
    Wolever TMS, Katzman-Relle L, Jenkins AL, Vuksna V, Josse RG, Jenkins DJA. Glycaemic index of 102 complex carbohydrate foods in patients with diabetes. Nutr Res. 1994;14:651–69.CrossRefGoogle Scholar
  121. 121.
    Jenkins DJA, Thorne MJ, Camelon K, Jenkins A, Rao AV, Taylor RH, Thompson LU, Kalmusky J, Reichert R, Francis T. Effect of processing on digestibility and the blood glucose response: a study of lentils. Am J Clin Nutr. 1982;36:1093–101.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Jenkins DJA, Wolever TMS, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV. Glycaemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr. 1981;34:362–6.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycaemic index and glycaemic load values. Am J Clin Nutr. 2002;76:5–56.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Chung HJ, Liu Q, Hoover R, Tom D, Warkentin C, Vandenberg A. In vitro starch digestibility, expected glycaemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars. Food Chem. 2008;111:316–21.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Correa P. Epidemiological correlations between diet and cancer frequency. Cancer Res. 1981;41:3685–90.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Adebamowo CA, Cho E, Sampson L, Katan MB, Spiegelman D, Willett WC, Holmes MD. Dietary flavonols and flavonolrich foods intake and the risk of breast cancer. Int J Cancer. 2005;114:628–33.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Agurs-Collins T, Smoot D, Afful J, Makambi K, Adams-Campbell LL. Legume intake and reduced colorectal adenoma risk in African–Americans. J Natl Black Nurses Assoc. 2006;17:6–12. (Abstract).PubMedPubMedCentralGoogle Scholar
  128. 128.
    Nichenametla SN, Taruscio TG, Barney DL, Exon JH. A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr. 2006;46:161–83.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Mejia EGL, Prisecaru VI. Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr. 2005;45:425–45.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Scarafoni A, Magni C, Duranti M. Molecular nutraceutics as a mean to investigate the positive effects of legume seed proteins on human health. Trends Food Sci Technol. 2007;18:454–63.CrossRefGoogle Scholar
  131. 131.
    Cheung AHK, Ng TB. Isolation and characterization of a trypsin–chymotrypsin inhibitor from the seeds of green lentil (lens Culinaris). Protein Pept Lett. 2007;14:859–64.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Losso JN. The biochemical and functional food properties of the Bowman–Birk inhibitor. Crit Rev Food Sci Nutr. 2008;4:94–118.CrossRefGoogle Scholar
  133. 133.
    Kennedy AR. The Bowman–Birk inhibitor from soybeans as an anticarcinogenic agent. Am J Clin Nutr. 1998;68:1406S–12S.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Caccialupi P, Ceci LR, Siciliano RA, Pignone D, Clemene A, Sonnante G. Bowman-Birk inhibitors in lentil: heterologous expression, functional characterization and anti-proliferative properties in human colon cancer cells. Food Chem. 2010;120:1058–66.CrossRefGoogle Scholar
  135. 135.
    Marks G, Aydos RDA, Fagundes DJ, Pontes ERJC, Takita LC, Amaral EGAS, Rossini A, Ynouye AM. Modulation of transforming growth factor beta2 (TGF-beta2) by inositol hexaphosphate in colon carcinogenesis in rats. Acta Cir Bras. 2006;21:51–6.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Verghese M, Rao DR, Chawana CB, Walker LT, Shackelford L. Anticarcinogenic effect of phytic acid (IP6): apoptosis as a possible mechanism of action. LWT-Food Sci Technol. 2006;39:1093–8.CrossRefGoogle Scholar
  137. 137.
    Gurfinkel DM, Rao AV. Soya saponins: the relationship between chemical structure and colon anticarcinogenic activity. Nutr Cancer. 2003;47:24–33.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Faris MAIE, Tacruri HR, Issa AY. Role of lentils (Lens culinaris L.) I human health and nutrition: a review. Mediterr J Nutr Metab. 2013;6:3–16.CrossRefGoogle Scholar
  139. 139.
    Chen C, Kong ANT. Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci. 2005;26:318–26.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio Capurso
    • 1
  • Gaetano Crepaldi
    • 2
  • Cristiano Capurso
    • 3
  1. 1.Department of Internal MedicineSchool of Medicine, University of BariBariItaly
  2. 2.Department of Biomedical ScienceCNR Neuroscience InstitutePadovaItaly
  3. 3.Department of Medical and Surgical SciencesSchool of Medicine, University of FoggiaFoggiaItaly

Personalised recommendations