Advertisement

Heuristic Problems in Automation and Control Design: What Can Be Learnt from TRIZ?

  • Leonid ChechurinEmail author
  • Victor Berdonosov
  • Leonid Yakovis
  • Vasilii Kaliteevskii
Chapter

Abstract

This chapter begins with a history of automatic control. It shows how this field of engineering evolved from pure heuristic designs (inventions) to the home court of applied mathematics. Thanks to this evolution, modern automatic control is able to formally provide standard out-of-the-box solutions to any object or technology. At the same time, this standardization can cause professional thinking inertia. The latter may be a reason to miss possible automation ideas when they are out of the “sensor–controller–drive” box. This chapter speculates on how the principle of Ideal Final Result (IFR) (and accompanying TRIZ tools such as trimming and resources search procedures) can enlarge the toolkit of automation engineers. It also discusses how the ideality principle can be interpreted in terms of plant modification. Three examples illustrate the application of the ideality principle for automation design. The first example analyzes in detail several inventive ideas in hydraulic power-steering system design. The second example demonstrates how mathematical modeling (in contrast to any TRIZ modeling techniques) can be more productive in inventive idea generation. The third example presents detailed analysis of the heuristic part of concurrent (parallel) plant and control design in process control.

Notes

Acknowledgements

L. Chechurin would like to acknowledge the support of TEKES, Finnish agency for innovation support, and its Finnish distinguished professor (FiDiPro) program.

The authors would like to acknowledge the EU Marie Curie program INDEED project for its support.

References

  1. Astrȍm, K. J. (1970). Introduction to stochastic control theory. New York: Academic.Google Scholar
  2. Behbudov, M. B., & Goldobina, L. A. (2001). Mechanism for load swing damping hanged by crane. Patent RU 2224708.Google Scholar
  3. Brunner, S., & Harrer, M. (2017). Steering requirements: Overview. In M. Harrer & P. Pfeffer (Eds.), Steering handbook. Cham: Springer.  https://doi.org/10.1007/978-3-319-05449-0_3, Print ISBN978–3–319-05448-3, Online ISBN978–3–319-05449-0.Google Scholar
  4. Brunner, S., Harrer, M., Höll, M., & Lunkeit, D. (2017). Layout of steering systems. In M. Harrer and P. Pfeffer (Eds.), Steering handbook. Cham: Springer.  https://doi.org/10.1007/978-3-319-05449-0_3, Print ISBN978–3–319-05448-3, Online ISBN978–3–319-05449-0.Google Scholar
  5. Chechurin, S., Chechurin, L., & Mandrik, A. (2009). A method of stabilizing of output signal of oscillating system. Patent RU 2393520.Google Scholar
  6. Doroganitch, S., Edvabnik, J., Shtengel, E., & Yakovis, L. (1989). Optimization of parameters of automated process complex for raw mix preparation. Presented at the the second NCB international seminar on cement and building materials, New Delhi, pp. 56–63.Google Scholar
  7. Duda, W. H. (1984). Cement-data-book, volume 2, Electrical engineering. Automation. Storage. Transportation. Dispatch. Wiesbaden/Berlin: Bauferlag GmbH.Google Scholar
  8. Fitzgerald, T. J. (1974). Theory of blending in single inlet flow systems. Chemical Engineering Science, 29(4), 1019–1024.CrossRefGoogle Scholar
  9. Gorenko, I., Doroganitch, S., & Yakovis, L. (1987). Multilevel process control in multi-component mixtures blending. Presented at the the 10th world congress on automatic control, Munich, vol. 2, pp. 218–222.Google Scholar
  10. Karim, N. How car steering works, last visited 14 July 2016. http://auto.howstuffworks.com/steering4.htm
  11. Kazumasa, K., et al. (1989). Control apparatus for power-assisted steering system. Patent EP 0430285 A1.Google Scholar
  12. Kloos T., & Pfeffer P. E. (2017). Steering system models – An efficient approach for parameter identification and steering system optimization. In P. Pfeffer (Ed.), Proceedings of the 8th international Munich chassis symposium 2017. Wiesbaden: Springer Vieweg.  https://doi.org/10.1007/978-3-658-18459-9_36, Print ISBN978-3-658-18458-2, Online ISBN978-3-658-18459-9.Google Scholar
  13. Kokoev, M. N. (1999). Mechanism for swing damping and leveling of the load. Patent RU 2141926.Google Scholar
  14. Kyosuke, H., et al. (1992). Power steering apparatus. Patent EP 0562426 A1.Google Scholar
  15. Marcus, R. (2007). Hydraulic power steering system design in road vehicles analysis, testing and enhanced functionality Linkoping. ISBN 978-91-85643-00-4.Google Scholar
  16. Olli, M., & Ahvo, R. (1994). Method for damping the load swing of a crane. Patent US 5799805.Google Scholar
  17. Sharifzadeh, M. (2013). Integration of process design and control: A review. Chemical Engineering Research and Design, 91(12), 2515–2549.CrossRefGoogle Scholar
  18. Susumu, H., et al. (1997). Flow control device of power steering apparatus. Patent US 6041807 A.Google Scholar
  19. Takeshi, F., & Noguchi, M. (1984). Fluid pressure control device in power steering apparatus. Patent US 4619339 A.Google Scholar
  20. Vieira, D. M., Ibrahim, R. C., & Torikai, D. (2010). Active control system to stabilize suspended moving vehicles in cables. ABCM symposium series in mechatronics, Rio de Janeiro, Brasil, vol. 4, pp. 120–126.Google Scholar
  21. Yakovis, L., & Chechurin, L. (2015a). Systematic design of automated processing complexes » 25th international conference on flexible automation and intelligent manufacturing – FAIM, international conference on flexible automation and intelligent manufacturing, vol. 1, pp. 438–445Google Scholar
  22. Yakovis, L., & Chechurin, L. (2015b). Creativity and heuristics in process control engineering. Chemical Engineering Research and Design, 103, 40–49.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Leonid Chechurin
    • 1
    Email author
  • Victor Berdonosov
    • 2
  • Leonid Yakovis
    • 3
  • Vasilii Kaliteevskii
    • 4
  1. 1.School of Business and ManagementLappeenranta University of TechnologyLappeenrantaFinland
  2. 2.Komsomolsk-on-Amur State Technical UniversityKomsomolsk-on-AmurRussia
  3. 3.St. Petersburg State Polytechnical UniversitySaint PetersburgRussia
  4. 4.Department of Industrial Engineering and ManagementLappeenranta University of TechnologyLappeenrantaFinland

Personalised recommendations