Advertisement

Engineering Creativity: The Influence of General Knowledge and Thinking Heuristics

  • Iouri BelskiEmail author
  • Anne Skiadopoulos
  • Guillermo Aranda-Mena
  • Gaetano Cascini
  • Davide Russo
Chapter

Abstract

Belski et al. revisit the Amabile’s model of creativity and propose to append its components in order to describe engineering creativity more accurately. Analysing the outcomes of numerous idea-generation experiments, they conclude that in order to adequately explain creative performance of engineers, the ‘knowledge outside profession’ component (i.e. ‘general knowledge’) needs to be added to classical components of creative performance. Reflecting on the outcomes of idea generation experiments, the authors conclude that ideation heuristics can effectively facilitate the use of this ‘general knowledge’ component.

References

  1. Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Pelsonality and Social Psychology, 45(2), 357–376.CrossRefGoogle Scholar
  2. Baer, J. (2012). Domain specificity and the limits of creativity theory. The Journal of Creative Behavior, 46(1), 16–29.  https://doi.org/10.1002/jocb.002.CrossRefGoogle Scholar
  3. Baer, J. (2015). The importance of domain-specific expertise in creativity. Roeper Review, 37(3), 165.CrossRefGoogle Scholar
  4. Baer, J. (2016). Content matters: Why nurturing creativity is so different in different domains. In R. A. Beghetto & B. Sriraman (Eds.), Creative contradictions in education (pp. 129–142). Switzerland: Springer International Publishing.Google Scholar
  5. Belski, I. (2007). Improve your thinking: Substance-field analysis. Melbourne: TRIZ4U.Google Scholar
  6. Belski, I. (2017). Engineering creativity – How to measure it? In N. Huda, D. Inglis, N. Tse, & G. Town (Eds.), Proceedings of the 28th annual conference of the Australasian Association for Engineering Education (AAEE 2017) (pp. 321–328). Sydney: School of Engineering, Macquarie University.Google Scholar
  7. Belski, I., & Belski, I. (2008). Cognitive foundations of TRIZ problem-solving tools. In T. Vaneker (Ed.), Proceedings of the TRIZ-future conference 2008 (pp. 95–102). Enschede: University of Twente.Google Scholar
  8. Belski, I., & Belski, I. (2013). Application of TRIZ in improving the creativity of engineering experts. In A. Aoussat, D. Cavallucci, M. Trela, & J. Duflou (Eds.), Proceedings of TRIZ future conference 2013 (pp. 67–72). Paris: Arts Et Metiers ParisTech.Google Scholar
  9. Belski, I., & Belski, R. (2016). Influence of prior knowledge on students’ performance in idea generation: Reflection on university entry requirements. In S. T. Smith, Y. Y. Lim, A. Bahadori, N. Lake, R. V. Pagilla, A. Rose, & K. Doust (Eds.), Proceedings of the 27th annual conference of the Australasian association for engineering education – AAEE2016 (pp. 1–9). Lismore: Southern Cross University.Google Scholar
  10. Belski, I., Hourani, A., Valentine, A., & Belski, A. (2014). Can simple ideation techniques enhance idea generation? In A. Bainbridge-Smith, Z. T. Qi, & G. S. Gupta (Eds.), Proceedings of the 25th annual conference of the Australasian association for engineering education (pp. 1C, 1–9). Wellington: School of Engineering & Advanced Technology, Massey University.Google Scholar
  11. Belski, I., Belski, A., Berdonosov, V., Busov, B., Bartlova, M., Malashevskaya, E., et al. (2015). Can simple ideation techniques influence idea generation: Comparing results from Australia, Czech Republic, Finland and Russian Federation. In A. Oo, A. Patel, T. Hilditch, & S. Chandran (Eds.), Proceedings of the 26th annual conference of the Australasian association for engineering education – AAEE2015 (pp. 474–483). Geelong: School of Engineering, Deakin University, Victoria, Australia.Google Scholar
  12. Belski, I., Adunka, R., & Mayer, O. (2016a). Educating a creative engineer: Learning from engineering professionals. Procedia CIRP, 39, 79–84.  https://doi.org/10.1016/j.procir.2016.01.169.CrossRefGoogle Scholar
  13. Belski, I., Livotov, P., & Mayer, O. (2016b). Eight fields of MATCEMIB help students to generate more ideas. Procedia CIRP, 39, 85–90.  https://doi.org/10.1016/j.procir.2016.01.170.CrossRefGoogle Scholar
  14. Buskes, G., & Belski, I. (2017). Prior knowledge and student performance in idea generation. In N. Huda, D. Inglis, N. Tse, & G. Town (Eds.), Proceedings of the 28th annual conference of the Australasian association for engineering education (AAEE 2017) (pp. 354–361). Sydney: School of Engineering, Macquarie University.Google Scholar
  15. Cross, N. (2004). Expertise in design: An overview. Design Studies, 25(5), 427–441.CrossRefGoogle Scholar
  16. Dobrusskin, C., Belski, A., & Belski, I. (2014). On the effectiveness of systematized substance-field analysis for idea generation. In C. Tucci, T. Vaneker, & T. Nagel (Eds.), Proceedings of the TRIZ future conference: Global innovation convention (TFC 2014) (pp. 123–127). Freiburg: The European TRIZ Association.Google Scholar
  17. Gick, M. L. (1986). Problem-solving strategies. Educational Psychologist, 21(1/2), 99–120.CrossRefGoogle Scholar
  18. Harlim, J., & Belski, I. (2013). Long-term innovative problem solving skills: Redefining problem solving. International Journal of Engineering Education, 29(2), 280–290.Google Scholar
  19. Harlim, J., & Belski, I. (2017). Stages of engineering problem solving: Learning from the experts. In N. Huda, D. Inglis, N. Tse, & G. Town (Eds.), Proceedings of the 28th annual conference of the Australasian association for engineering education (AAEE 2017) (pp. 295–302). Sydney: School of Engineering, Macquarie University.Google Scholar
  20. Kern, W. (2008). 1 – Overview and evolution of silicon wafer cleaning technology. In Handbook of silicon wafer cleaning technology (2nd ed., pp. 3–92). Norwich: William Andrew Publishing.CrossRefGoogle Scholar
  21. Reinhardt, K. A. (2008). 11 – New cleaning and surface conditioning techniques and technologies. In Handbook of silicon wafer cleaning technology (2nd ed., pp. 661–688). Norwich: William Andrew Publishing.CrossRefGoogle Scholar
  22. Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, MA: MIT.Google Scholar
  23. Weisberg, R. W. (2006). Creativity: Understanding innovation in problem solving, science, invention, and the arts. Hoboken: Wiley.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Iouri Belski
    • 1
    Email author
  • Anne Skiadopoulos
    • 2
  • Guillermo Aranda-Mena
    • 1
  • Gaetano Cascini
    • 3
  • Davide Russo
    • 4
  1. 1.Royal Melbourne Institute of TechnologyMelbourneAustralia
  2. 2.La Trobe UniversityBundooraAustralia
  3. 3.Polytechnic University of MilanMilanItaly
  4. 4.Department of Management, Information and Production EngineeringUniversity of BergamoBergamoItaly

Personalised recommendations