Advertisement

Optimized Morphological Analysis in Decision-Making

  • Shqipe BuzukuEmail author
  • Andrzej Kraslawski
Chapter

Abstract

Morphological analysis (MA) is one of the methods most widely used in identifying, formulating, and structuring complex problems with the aim of seeking optimal solutions. When extended with cross-consistency assessment (CCA), MA becomes an iterative method. The aim of this chapter is to propose a modelling approach for using extended MA and to complement it with sensitivity analysis (SA) for optimization and time reduction over the iteration process. First, the aim is to recognize the connection between systems engineering requirements and project management activities, while incorporating multiple design dimensions and categories. Second, the chapter extends the application of the creative design approach. The target is to recognize and analyze the conflicts between the design activities, and aims at creating alternative options and solutions to resolve conflicts.

Keywords

Morphological matrix Sensitivity analysis Optimization Decision-making Project management 

Notes

Acknowledgements

This research was supported in part by The Research Foundation of Lappeenranta University of Technology [LUT Tukisäätiö grant number 122/16] and The Foundation for Economic Education, [Grant number 160039].

References

  1. Ajith, K. J., & Ganesh, L. S. (2009). Research on knowledge transfer in organizations: A morphology. Journal of Knowledge Management, 13(4), 161–174.  https://doi.org/10.1108/13673270910971905.Google Scholar
  2. Altshuller, G. (1984). Creativity as an exact science. Pocket mathematical library. Boca Raton: CRC Press.Google Scholar
  3. Arciszewski, T. (2018). Morphological analysis in inventive engineering. Technological Forecasting and Social Change, 126, 92–101.  https://doi.org/10.1016/j.techfore.2017.10.013.Google Scholar
  4. Buzuku, S., & Kraslawski, A. (2015). Engineering geology and health and safety. Application of morphological analysis to policy formulation for wastewater treatment (pp. 102–108). Notes of the Mining Institute 214. http://pmi.spmi.ru/index.php/pmi/article/view/138/159.
  5. Buzuku, S., Kraslawski, A., & Harmaa, K. (2015, November 4–6). Supplementing morphological analysis with a design structure matrix for policy formulation in a wastewater treatment plant. In Modeling and managing complex systems (pp. 9–18). Fort Worth.  https://doi.org/10.3139/9783446447264.002.Google Scholar
  6. Chechurin, L. (2016). TRIZ in science. Reviewing indexed publications. Procedia CIRP, 39, 156–165.  https://doi.org/10.1016/j.procir.2016.01.182.Google Scholar
  7. Chen, J. H.-C., & Lai, C.-F. (2010). The theory of morphological analysis applied to western apparel-a case study of renaissance era. International Journal of Computer Science and Network Security, 10(4), 176–184.Google Scholar
  8. Duczynski, G. (2017). Morphological analysis as an aid to organisational design and transformation. Futures, 86, 36–43.  https://doi.org/10.1016/j.futures.2016.08.001.Google Scholar
  9. Duczynski, G. (2018). Investigating traffic congestion: Targeting technological and social interdependencies through general morphological analysis. Technological Forecasting and Social Change, 126(February 2017), 161–167.  https://doi.org/10.1016/j.techfore.2017.05.019.Google Scholar
  10. Eriksson, T., & Ritchey, T. (2002). Scenario development using computerised morphological analysis. Papers presented at the Cornwallis and Winchester international OR conference, England. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.9096&rep=rep1&type=pdf. Accessed 1 June 2017.
  11. Feng, X., & Fuhai, L. (2012). Patent text mining and informetric-based patent technology morphological analysis: An empirical study. Technology Analysis and Strategic Management, 24(5), 467–479.  https://doi.org/10.1080/09537325.2012.674669.Google Scholar
  12. Ferretti, F., Saltelli, A., & Tarantola, S. (2016). Trends in sensitivity analysis practice in the last decade. Science of the Total Environment, 568, 666–670.  https://doi.org/10.1016/j.scitotenv.2016.02.133.Google Scholar
  13. Frow, P., Nenonen, S., Payne, A., & Storbacka, K. (2015). Managing co-creation design: A strategic approach to innovation. British Journal of Management, 26(3), 463–483.  https://doi.org/10.1111/1467-8551.12087.Google Scholar
  14. Geum, Y., Jeon, H., & Lee, H. (2016). Developing new smart services using integrated morphological analysis: Integration of the market-pull and technology-push approach. Service Business, 10(3), 531–555.  https://doi.org/10.1007/s11628-015-0281-2.Google Scholar
  15. Haydo, P. A. (2018). From morphological analysis to optimizing complex industrial operation scenarios. Technological Forecasting and Social Change, 126, 147–160.  https://doi.org/10.1016/j.techfore.2017.06.009.Google Scholar
  16. Im, K., & Cho, H. (2013). A systematic approach for developing a new business model using morphological analysis and integrated fuzzy approach. Expert Systems with Applications, 40(11), 4463–4477.  https://doi.org/10.1016/j.eswa.2013.01.042.Google Scholar
  17. Jeong, S., Jeong, Y., Lee, K., Lee, S., & Yoon, B. (2016). Technology-based new service idea generation for smart spaces: Application of 5G mobile communication technology. Sustainability, 8(11), 1211.  https://doi.org/10.3390/su8111211.Google Scholar
  18. Jimenez, H., & Mavris, D. (2010). An evolution of morphological analysis applications in systems engineering. In 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (pp. 1–10).  https://doi.org/10.2514/6.2010-972.
  19. Johansen, I. (2018). Scenario modelling with morphological analysis. Technological Forecasting and Social Change, 126(February 2017), 116–125.  https://doi.org/10.1016/j.techfore.2017.05.016.Google Scholar
  20. Kannengiesser, U., Williams, C., & Gero, J. (2013). What do the concept generation techniques of Triz, morphological analysis and brainstorming have in common. 19th international conference on engineering design, ICED 2013 7 DS75-07 (October 2015), 297–300.Google Scholar
  21. Kuriakose, K. K., Raj, B., Murty, S. S. A. V., & Swaminathan, P. I. (2010). Knowledge management maturity models – A morphological analysis. Journal of Knowledge Management Practice, 11(3), 1–9.Google Scholar
  22. Lopes Correia da Silva, L. (2011). Morphological analysis of electric vehicles introduction in urban traffic in Sao Paulo. Future Studies Research Journal, 3(1), 14–37.Google Scholar
  23. Louise, L., Mapule, M., & le Roux, H. (2009). A model for peace support operations: An overview of the ICT and interoperability requirements. In Proceedings of the 4th international conference on information warfare and security (pp. 1–10).Google Scholar
  24. Mysiak, J. (2010). Decision methods. 2010. http://www.netsymod.eu/mdss/mDSS_DECMETH.pdf
  25. Ney, S. (2012). Resolving messy policy problems: Handling conflict in environmental, transport, health and ageing policy, The earthscan science in society series. Abingdon: Routledge.Google Scholar
  26. Ölvander, J., Lundén, B., & Gavel, H. (2009). A computerized optimization framework for the morphological matrix applied to aircraft conceptual design. Computer-Aided Design, 41(3), 187–196.  https://doi.org/10.1016/j.cad.2008.06.005.Google Scholar
  27. Ostertagová, E., Kováč, J., Ostertag, O., & Malega, P. (2012). Application of morphological analysis in the design of production systems. Procedia Engineering, 48, 507–512.  https://doi.org/10.1016/j.proeng.2012.09.546.Google Scholar
  28. Pidd, M. (2009). Tools for thinking: Modelling in management science. Chichester: Wiley.Google Scholar
  29. Plauché, M., de Waal, A., Grover, A. S., & Gumede, T. (2010). Morphological analysis: A method for selecting ICT applications in South African government service delivery. Information Technologies & International Development, 6(1), 1–20.Google Scholar
  30. Ritchey, T. (2010). Wicked problems, social messes: Decision support modelling with morphological analysis. Stockholm: Ritchey Consulting.Google Scholar
  31. Ritchey, T. (2011). Wicked problems – Social messes decision support modelling with morphological analysis, Risk, governance and society. Heidelberg: Springer.  https://doi.org/10.1007/978-3-642-19653-9.Google Scholar
  32. Ritchey, T. (2012). Outline for a morphology of modelling methods: Contribution to a general theory of modelling. Acta Morphologica Generalis AMG, 1(1), 1–20.Google Scholar
  33. Ritchey, T. (2014). Four models about decision support modeling. Acta Morphologica Generalis AMG, 3(1), 1–15.Google Scholar
  34. Ritchey, T. (2015). Principles of cross-consistency assessment in general morphological modelling. Acta Morphologica Generalis, 4(2), 1–20.Google Scholar
  35. Ritchey, T. (2018). General morphological analysis as a basic scientific modelling method. Technological Forecasting and Social Change, 126(June 2017), 81–91.  https://doi.org/10.1016/j.techfore.2017.05.027.Google Scholar
  36. Ritchey, T., & de Waal, A. (2007). Combining morphological analysis and Bayesian networks for strategic decision support. ORiON, 23(2), 105–121.  https://doi.org/10.5784/23-2-51.Google Scholar
  37. Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155–169.  https://doi.org/10.1007/BF01405730.Google Scholar
  38. Seidenstricker, S., & Linder, C. (2014). A morphological analysis-based creativity approach to identify and develop ideas for BMI: A case study of a high-tech manufacturing company. International Journal of Entrepreneurship & Innovation Management, 18(5/6), 409–424.  https://doi.org/10.1504/IJEIM.2014.064716.Google Scholar
  39. Seidenstricker, S., Scheuerle, S., & Linder, C. (2014). Business model prototyping – Using the morphological analysis to develop new business models. Procedia – Social and Behavioral Sciences, 148, 102–109.  https://doi.org/10.1016/j.sbspro.2014.07.023.Google Scholar
  40. Sholeh, M., Ghasemi, A., & Shahbazi, M. (2018). A new systematic approach in new product development through an integration of general morphological analysis and IPA. Decision Science Letters, 7, 181–196.  https://doi.org/10.5267/j.dsl.2017.5.004.Google Scholar
  41. Storbacka, K., & Nenonen, S. (2012). Competitive arena mapping: Market innovation using morphological analysis in business markets. Journal of Business-to-Business Marketing, 19(3), 183–215.  https://doi.org/10.1080/1051712X.2012.638464.Google Scholar
  42. Takane, Y., Jung, S., Oshima-Takane, Y., Millsap, R. E., & Maydeu-Olivares, A. (2009). Multidimensional Scaling, 9(3), 219–242.Google Scholar
  43. Teles, M. d. F., & de Sousa, J. F. (2017). A general morphological analysis to support strategic management decisions in public transport companies. Transportation Research Procedia, 22, 509–518.  https://doi.org/10.1016/j.trpro.2017.03.069.Google Scholar
  44. Teles, M. d. F., & de Sousa, J. F. (2018). Linking fields with GMA: Sustainability, companies, people and operational research. Technological Forecasting and Social Change, 126, 138–146.  https://doi.org/10.1016/j.techfore.2017.05.012.Google Scholar
  45. Voros, J. (2018). On a morphology of contact scenario space. Technological Forecasting and Social Change, 126, 126–137.  https://doi.org/10.1016/j.techfore.2017.05.007.Google Scholar
  46. Williams, P. B., & Bowden, F. D. J. (2013). Dynamic morphological exploration. In 22nd national conference of the Australian society for operations research, Adelaide, Australia, 1–6 December 2013 (pp. 232–238). www.asor.org.au/conferences/asor2013.
  47. Yoon, B. (2008). On the development of a technology intelligence tool for identifying technology opportunity. Expert Systems with Applications, 35(1–2), 124–135.  https://doi.org/10.1016/j.eswa.2007.06.022.Google Scholar
  48. Yoon, B., & Park, Y. (2005). A systematic approach for identifying technology opportunities: Keyword-based morphology analysis. Technological Forecasting and Social Change, 72(2), 145–160.  https://doi.org/10.1016/j.techfore.2004.08.011.Google Scholar
  49. Yoon, B., Park, I., & Coh, B.-y. (2014). Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining. Technological Forecasting and Social Change, 86, 287–303.  https://doi.org/10.1016/j.techfore.2013.10.013.Google Scholar
  50. Zeiler, W. (2018). Morphology in conceptual building design. Technological Forecasting and Social Change, 126, 102–115.  https://doi.org/10.1016/j.techfore.2017.06.012.Google Scholar
  51. Zwicky, F. (1969). Discovery, invention, research through the morphological approach. New York: Macmillan.Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Lappeenranta University of TechnologyLappeenrantaFinland
  2. 2.Faculty of Process and Environmental EngineeringTechnical University of LodzLodzPoland

Personalised recommendations