Advertisement

Control Design Tools for Intensified Solids Handling Process Concepts

  • Markku OhenojaEmail author
  • Marko Paavola
  • Kauko Leiviskä
Chapter

Abstract

The Theory of Inventive Problem Solving (TRIZ) can be applied to generate new concepts for process intensification (PI). In order to meet the target performance of the intensified process and to avoid design bottlenecks due to process operation, the suggested concepts need to comprise a feasible control system. Therefore, a design step, where a systematic procedure for variable selection is performed, available measurement devices are mapped, and the control design is initialized, is needed. This chapter presents a systematic approach to tackle these issues in a structured manner in order to enable a smooth transfer from new innovative ideas into feasible process design from operation point of view.

Notes

Acknowledgments

The present work has been developed under the financial support received from The EU Framework Programme for Research and Innovation – H2020-SPIRE-2015 (IbD® – Intensified by Design. GA – 680565).

References

  1. Baldea, M. (2014). Multum in parvo: A process intensification retrospective and outlook. In J. D. Siirola, G. P. Towler, M. R. Eden (Eds.), Computer aided chemical engineering (Vol. 34, pp. 15–24). Proceedings of the 8th international conference on foundations of computer-aided process design. Elsevier.  https://doi.org/10.1016/B978-0-444-63433-7.50003-1.Google Scholar
  2. Bristol, E. (1966). On a new measure of interaction for multivariable process control. IEEE Transactions on Automatic Control, 11(1), 133–134.  https://doi.org/10.1109/TAC.1966.1098266.CrossRefGoogle Scholar
  3. Chechurin, L., Berdonosov, V., & Yakovis, L. (2016). Heuristic problems in automation and control design: What can be learnt from TRIZ? TRIZ future conference. Wroclaw.Google Scholar
  4. Cremaschi, S. (2015). A perspective on process synthesis: Challenges and prospects. Computers & Chemical Engineering, Special issue: Selected papers from the 8th international symposium on the Foundations of Computer-Aided Process Design (FOCAPD 2014), July 13–17, 2014, Cle Elum, Washington, DC, 81 (October): 130–37.  https://doi.org/10.1016/j.compchemeng.2015.05.007.CrossRefGoogle Scholar
  5. Hamid, M. K. A. (2011). Model-based integrated process design and controller design of chemical processes. Ph.D. thesis, Kgs. Lyngby: Department of Chemical and Biochemical Engineering, Technical University of Denmark, Copenhagen, Denmark.Google Scholar
  6. Hopkins, L., Lant, P., & Newell, B. (1998). Output strutural controllability: A tool for integrated process design and control. Journal of Process Control, 8(1), 57–68.  https://doi.org/10.1016/S0959-1524(97)00027-9.CrossRefGoogle Scholar
  7. Huusom, J. K. (2015). Challenges and opportunities in integration of design and control. Computers & Chemical Engineering, Special issue: Selected papers from the 8th international symposium on the Foundations of Computer-Aided Process Design (FOCAPD 2014), July 13–17, 2014, Cle Elum, Washington, DC, 81 (October): 138–46.  https://doi.org/10.1016/j.compchemeng.2015.03.019.CrossRefGoogle Scholar
  8. Lima, F. V., & Georgakis, C. (2010). Input–Output operability of control systems: The steady-state case. Journal of Process Control, 20(6), 769–776.  https://doi.org/10.1016/j.jprocont.2010.04.008.CrossRefGoogle Scholar
  9. Livotov, P., Chandra Sekeran, A., Law, R., Mas’Udah, & Reay, D. (2017). Systematic innovation in process engineering: Linking TRIZ and process intensification. TRIZ future conference. Lappeenranta.Google Scholar
  10. Mauricio-Iglesias, M., Huusom, J. K., & Sin, G. (2013, May). Control assessment for heat integrated systems. An industrial case study for ethanol recovery. Chemical Engineering and Processing: Process Intensification, Special issue: Hybrid and reactive separations, 67: 60–70.  https://doi.org/10.1016/j.cep.2012.11.003.CrossRefGoogle Scholar
  11. Newcombe, B., Bradshaw, D., & Wightman, E. (2013). The hydrodynamics of an operating flash flotation cell. Minerals Engineering, 41, 86–96.  https://doi.org/10.1016/j.mineng.2012.11.007.CrossRefGoogle Scholar
  12. Nikačević, N. M., Huesman, A. E. M., Van den Hof, P. M. J., & Stankiewicz, A. I. (2012). Opportunities and challenges for process control in process intensification. Chemical Engineering and Processing: Process Intensification, 52, 1–15.  https://doi.org/10.1016/j.cep.2011.11.006.CrossRefGoogle Scholar
  13. Reay, D. A., Ramshaw, C., & Harvey, A. (2013). Process intensification: Engineering for efficiency, sustainability and flexibility, Isotopes in organic chemistry (2nd ed.). Amsterdam/Boston: Elsevier/BH, Butterworth-Heinemann is an imprint of Elsevier.Google Scholar
  14. Ricardez-Sandoval, L. A., Budman, H. M., & Douglas, P. L. (2009). Integration of design and control for chemical processes: A review of the literature and some recent results. Annual Reviews in Control, 33(2), 158–171.  https://doi.org/10.1016/j.arcontrol.2009.06.001.CrossRefGoogle Scholar
  15. Roffel, B., & Betlem, B. H. (2006). Process dynamics and control: Modeling for control and prediction. Chichester/Hoboken: Wiley.Google Scholar
  16. Saltelli, A., Ratto, M., Tarantola, S., & Campolongo, F. (2006). Sensitivity analysis practices: Strategies for model-based inference. Reliability Engineering & System Safety, the 4th international conference on Sensitivity Analysis of Model Output (SAMO 2004), 91(10): 1109–25.  https://doi.org/10.1016/j.ress.2005.11.014.CrossRefGoogle Scholar
  17. Sharifzadeh, M. (2013). Integration of process design and control: A review. Chemical Engineering Research and Design, 91(12), 2515–2549.  https://doi.org/10.1016/j.cherd.2013.05.007.CrossRefGoogle Scholar
  18. Singh, R., Gernaey, K. V., & Gani, R. (2009). Model-based computer-aided framework for design of process monitoring and analysis systems. Computers & Chemical Engineering, 33(1), 22–42.  https://doi.org/10.1016/j.compchemeng.2008.06.002.CrossRefGoogle Scholar
  19. van de Wal, M., & de Jager, B. (2001). A review of methods for input/output selection. Automatica, 37(4), 487–510.  https://doi.org/10.1016/S0005-1098(00)00181-3.CrossRefGoogle Scholar
  20. Vega, P., de Rocco Lamanna, R., Revollar, S., & Francisco, M. (2014). Integrated design and control of chemical processes – Part I: Revision and classification. Computers and Chemical Engineering, 71, 602–617.  https://doi.org/10.1016/j.compchemeng.2014.05.010.CrossRefGoogle Scholar
  21. Vinson, D. R., & Georgakis, C. (2000). A new measure of process output controllability. Journal of Process Control, 10(2–3), 185–194.  https://doi.org/10.1016/S0959-1524(99)00045-1.CrossRefGoogle Scholar
  22. Yang, K., & El-Haik, B. (2003). Design for six sigma: A roadmap for product development. New York: McGraw-Hill.Google Scholar
  23. Yuan, Z., Chen, B., Sin, G., & Gani, R. (2012). State-of-the-art and progress in the optimization-based simultaneous design and control for chemical processes. AICHE Journal, 58(6), 1640–1659.  https://doi.org/10.1002/aic.13786.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Markku Ohenoja
    • 1
    Email author
  • Marko Paavola
    • 1
  • Kauko Leiviskä
    • 1
  1. 1.Control Engineering, Faculty of TechnologyUniversity of OuluOuluFinland

Personalised recommendations