• Mikalai Filonchyk
  • Haowen Yan


Particulate matter (PM) is a widespread air pollutant, comprising a mixture of aerosols and liquid particles of the air in a suspended state. The indicators, commonly used to characterize the PM and relevant to health, include the mass concentration of particles with a diameter of less than 10 μm (PM10) and less than 2.5 μm (PM2.5) (Pope and Dockery 2006; Shiraiwa et al. 2012). PM2.5, often called as fine suspended particles, also includes ultrafine particles with a diameter of less than 0.1 μm (Mcmurry et al. 2004; US EPA 2010; Fann and Risley 2013). Table 1.1 shows this size categorization concept. The PM with a diameter from 0.1 to 1 μm can exist in the air for many days and weeks, respectively, and also can be subjected to cross-border transport of air for long distances.


  1. Abdou, W. A., Diner, D. J., Martonchik, J. V., Bruegge, C. J., Kahn, R. A., & Gaitley, B. J. (2005). Comparison of coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer aerosol optical depths over land and ocean scenes containing Aerosol Robotic Network sites. Journal of Geophysical Research Atmospheres, 110(D10), 1275–1287.CrossRefGoogle Scholar
  2. Abelsohn, A., & Stieb, D. M. (2011). Health effects of outdoor air pollution approach to counseling patients using the Air Quality Health Index. Canadian Family Physician, 57(8), 881–887.Google Scholar
  3. Abuduwailil, J., Zhaoyong, Z., & Fengqing, J. (2015). Evaluation of the pollution and human health risks posed by heavy metals in the atmospheric dust in Ebinur Basin in Northwest China. Environmental Science and Pollution Research, 22(18), 14018–14031.CrossRefGoogle Scholar
  4. Atkinson, R. W., Ross, A. H., Sunyer, J., Ayres, J., & Baccini, M. (2001). Acute effects of particulate air pollution on respiratory admissions: Results from APHEA 2 project. American Journal of Respiratory and Critical Care Medicine, 164(10), 1860–1866.CrossRefGoogle Scholar
  5. Ayala, A., Brauer, M., Mauderly, J. L., & Samet, J. M. (2012). Air pollutants and sources associated with health effects. Air Quality, Atmosphere and Health, 5(2), 151–167.CrossRefGoogle Scholar
  6. Beelen, R., Hoek, G., Brandt, P. A. V. D., Goldbohm, R. A., Fischer, P., & Schouten, L. J. (2008). Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environmental Health Perspectives, 116(2), 196–202.CrossRefGoogle Scholar
  7. Bench, G., Fallon, S., Schichtel, B., Malm, W., & Mcdade, C. (2007). Relative contributions of fossil and contemporary carbon sources to PM 2.5 aerosols at nine. Interagency Monitoring for Protection of Visual Environments (IMPROVE) network sites. Journal of Geophysical Research Atmospheres, 112(D10), 326–330.CrossRefGoogle Scholar
  8. Carrer, D., Meurey, C., Ceamanos, X., Roujean, J. L., Calvet, J. C., & Liu, S. (2014). Dynamic mapping of snow-free vegetation and bare soil albedos at global 1km scale from 10-year analysis of MODIS satellite products. Remote Sensing of Environment, 140(1), 420–432.CrossRefGoogle Scholar
  9. Chen, Y. Z., & Xiao, H. Y. (2009). Classification of atmospheric aerosol and its hazards to human health. Jiangxi Science, 27(6), 912–915. (in Chinese).Google Scholar
  10. Choi, Y., Park, R. J., & Ho, C. (2009). Estimates of ground-level aerosol mass concentrations using a chemical transport model with Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol observations over East Asia. Journal of Geophysical Research Atmospheres, 114(D4), 83–84.CrossRefGoogle Scholar
  11. Christopher, S. A., & Gupta, P. (2010). Satellite remote sensing of particulate matter air quality: The cloud-cover problem. Journal of the Air and Waste Management Association, 60(5), 596–602.CrossRefGoogle Scholar
  12. Chu, D. A., Kaufman, Y. J., Zibordi, G., Chern, J. D., Mao, J., & Li, C. (2003). Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research: Atmospheres, 108(D21), 4661.CrossRefGoogle Scholar
  13. Chu, P. C., Chen, Y., Lu, S., Li, Z., & Lu, Y. (2008). Particulate air pollution in Lanzhou China. Environment International, 34(5), 698–713.CrossRefGoogle Scholar
  14. Corn, M., Stein, F., Hammad, Y., Manekshaw, S., Freedman, R., & Hartstein, A. M. (1973). Physical and chemical properties of respirable coal dust from two United States mines. American Industrial Hygiene Association Journal, 34(7), 279–285.CrossRefGoogle Scholar
  15. Darlington, T. L., Kahlbaum, D. F., Heuss, J. M., & Wolff, G. T. (1997). Analysis of PM10 trends in the United States from 1988 through 1995. Journal of the Air and Waste Management Association, 47(10), 1070–1078.CrossRefGoogle Scholar
  16. Die, H. U., Zhang, L., Sha, S., & Wang, H. (2013). Contrast and Application of MODIS Aerosol Products over the Arid and Semiarid Region in Northwest China. Journal of Arid Meteorology, 31(4), 677–683. (in Chinese).Google Scholar
  17. Diner, D. J., Braswell, B. H., Davies, R., Gobron, N., Hu, J., & Jin, Y. (2005). The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sensing of Environment, 97(4), 495–518.CrossRefGoogle Scholar
  18. Ding, F., & Hanqiu, X. U. (2006). Comparison of two new algorithms for retrieving land surface temperature from landsat TM thermal band. Geo-Information Science, 8(3), 125–130.Google Scholar
  19. Dockery, D. W., & Pope, C. A. (1994). Acute respiratory effects of particulate air pollution. Annual Review of Public Health, 15(1), 107–132.CrossRefGoogle Scholar
  20. Downs, S. H., Schindler, C., & Liu, L. J. S. (2007). Reduced exposure to PM10 and attenuated age-related decline in lung function. New England Journal of Medicine, 357(23), 2338–2347.CrossRefGoogle Scholar
  21. Dubovik, O., Herman, M., Holdak, A., Lapyonok, T., Tanré, D., & Deuzé, J. L. (2011). Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmospheric Measurement Techniques, 4(5), 975–1018.CrossRefGoogle Scholar
  22. Durkee, P. A., Jensen, D. R., Hindman, E. E., & Haar, T. H. V. (1986). The relationship between marine aerosol particles and satellite-detected radiance. Journal of Geophysical Research: Atmospheres, 91(D3), 4063–4072.CrossRefGoogle Scholar
  23. Engel-Cox, J. A., Hoff, R. M., Rogers, R., Dimmick, F., Rush, A. C., & Szykman, J. J. (2006). Integrating lidar and satellite optical depth with ambient monitoring for 3-dimensional particulate characterization. Atmospheric Environment, 40(40), 8056–8067.CrossRefGoogle Scholar
  24. Erp, A. M. V., Kelly, F. J., Demerjian, K. L., Iii, C. A. P., & Cohen, A. J. (2012). Progress in research to assess the effectiveness of air quality interventions towards improving public health. Air Quality, Atmosphere and Health, 5(2), 217–230.CrossRefGoogle Scholar
  25. Fairley, D. (1990). The relationship of daily mortality to suspended particulates in Santa Clara County, 1980-1986. Environmental Health Perspectives, 89(4), 159–168.CrossRefGoogle Scholar
  26. Fann, N., & Risley, D. (2013). The public health context for PM 2.5, and ozone air quality trends. Air Quality, Atmosphere and Health, 6(1), 1–11.CrossRefGoogle Scholar
  27. Files, D. S., Webb, J. T., & Pilmanis, A. A. (2005). Depressurization in military aircraft: Rates, rapidity, and health effects for 1055 incidents. Aviation Space and Environmental Medicine, 76(76), 523–529.Google Scholar
  28. Filonchyk, M., Yan, H., Yang, S., & Hurynovich, V. (2016). A study of PM2.5 and PM10 concentrations in the atmosphere of large cities in Gansu Province, China, in summer period. Journal of Earth System Science, 125(6), 1175–1187.CrossRefGoogle Scholar
  29. Filonchyk, M., Yan, H., & Hurynovich, V. (2017). Temporal-spatial variations of air pollutants in Lanzhou, Gansu Province, China, during the spring–summer periods, 2014–2016. Environmental Quality Management, 26(4), 65–74.CrossRefGoogle Scholar
  30. Fraser, R. S. (1976). Satellite measurement of mass of Sahara dust in the atmosphere. Applied Optics, 15(10), 2471–2479.CrossRefGoogle Scholar
  31. Fraser, R. S., Kaufman, Y. J., & Mahoney, R. L. (1984). Satellite measurements of aerosol mass and transport. Atmospheric Environment, 18(12), 2577–2584.CrossRefGoogle Scholar
  32. Gillette, D. A., Blifford, I. H. J., & Fenster, C. R. (2010). Measurements of aerosol size distributions and vertical fluxes of aerosols on land subject to wind erosion. Journal of Applied Meteorology, 11(6), 977–987.CrossRefGoogle Scholar
  33. Giovannini, M., Sala, M., Riva, E., & Radaelli, G. (2010). Hospital admissions for respiratory conditions in children and outdoor air pollution in Southwest Milan, Italy. Acta Paediatrica, 99(8), 1180–1185.CrossRefGoogle Scholar
  34. Gobbi, G. P., Barnaba, F., & Ammannato, L. (2007). Estimating the impact of Saharan dust on the year 2001 PM 10, record of Rome, Italy. Atmospheric Environment, 41(2), 261–275.CrossRefGoogle Scholar
  35. Griggs, M. (1975). Measurements of atmospheric aerosol optical thickness over water using ERTS-1 data. Journal of the Air and Waste Management Association, 25(6), 622.Google Scholar
  36. Gu, J., Yu, S. S., Zhou, J. L., Zheng, J., & Chen, J. (2001). DCT coefficient and error concealment. High Technology Letters, 11(7), 36–39. (in Chinese).Google Scholar
  37. Guo, J. P., Zhang, X. Y., Che, H. Z., Gong, S. L., An, X., & Cao, C. X. (2009). Correlation between PM concentrations and aerosol optical depth in eastern China. Atmospheric Environment, 43(37), 5876–5886.CrossRefGoogle Scholar
  38. Gupta, P., Christopher, S. A., Wang, J., Gehrig, R., Lee, Y., & Kumar, N. (2006). Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment, 40(30), 5880–5892.CrossRefGoogle Scholar
  39. Hadjimitsis, D. G., Clayton, C. R. I., & Hope, V. S. (2004). An assessment of the effectiveness of atmospheric correction algorithms through the remote sensing of some reservoirs. International Journal of Remote Sensing, 25(18), 3651–3674.CrossRefGoogle Scholar
  40. Hadjimitsis, D. G., Nisantzi, A., & Trigkas, V. (2010). Satellite remote sensing, GIS and sun-photometers for monitoring PM10 in Cyprus: Issues on public health. Proceedings of SPIE - The International Society for Optical Engineering, 7826(20), 78262C-9.Google Scholar
  41. He, X. W., Xue, Y., Li, Y. J., Guang, J., Yang, L. K., & Xu, H. (2012). Monitoring the Haze using multi-sensor aerosol optical depth data. Egu General Assembly, 14, 13754.Google Scholar
  42. Herman, B. M., Browning, S. R., & Curran, R. J. (1971). The effect of atmospheric aerosols on scattered sunlight. Journal of the Atmospheric Sciences, 28(3), 419–428.CrossRefGoogle Scholar
  43. Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C., & Celarier, E. (1997). Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. Journal of Geophysical Research Atmospheres, 1021(D14), 16911–16922.CrossRefGoogle Scholar
  44. Holben, B., Vermote, E., Kaufman, Y. J., Tanre, D., & Kalb, V. (1992). Aerosol retrieval over land from AVHRR data-application for atmospheric correction. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 212–222.CrossRefGoogle Scholar
  45. Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557–569.CrossRefGoogle Scholar
  46. Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2006). Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Transactions on Geoscience and Remote Sensing, 44(11), 3180–3195.CrossRefGoogle Scholar
  47. Hsu, N. C., Jeong, M. J., Bettenhausen, C., Sayer, A. M., Hansell, R., Seftor, C. S., Huang, J., & Tsay, S. C. (2013). Enhanced deep blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research: Atmospheres, 118, 9296–9315.Google Scholar
  48. Hutchison, K. D., Faruqui, S. J., & Smith, S. (2008). Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5, observations through 3D spatial analyses. Atmospheric Environment, 42(3), 530–543.CrossRefGoogle Scholar
  49. Iii, C. A. P., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., & Ito, K. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. The Journal of the American Medical Association, 287(9), 1132–1141.CrossRefGoogle Scholar
  50. Julien, Y., & Sobrino, J. A. (2009). The Yearly Land Cover Dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters. Remote Sensing of Environment, 113(2), 329–334.CrossRefGoogle Scholar
  51. Jun, L. I., Sun, C. B., Liu, X. D., Dong, S. P., Guo, J., & Wang, Y. (2009). Non-parameter statistical analysis of impacts of meteorological conditions on PM concentration in Beijing. Research of Environmental Sciences, 22(6), 663–669. (in Chinese).Google Scholar
  52. Kahn, R., Banerjee, P., & McDonald, D. (2001). Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. Journal of Geophysical Research: Atmospheres, 106(D16), 18219–18238.CrossRefGoogle Scholar
  53. Kalashnikova, O. V., & Kahn, R. A. (2008). Mineral dust plume evolution over the Atlantic from MISR and MODIS aerosol retrievals. Journal of Geophysical Research: Atmospheres, 113, D24204.CrossRefGoogle Scholar
  54. Kan, H., London, S. J., Chen, G., Zhang, Y., Song, G., & Zhao, N. (2008). Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: The Public Health and Air Pollution in Asia (PAPA) Study. Environmental Health Perspectives, 116(9), 1183.CrossRefGoogle Scholar
  55. Karlsson, L., Hernandez, F., Rodríguez, S., López-Pérez, M., Hernandez-Armas, J., & Alonso-Pérez, S. (2008). Using 137Cs and 40K to identify natural Saharan dust contributions to PM10 concentrations and air quality impairment in the Canary Islands. Atmospheric Environment, 42(30), 7034–7042.CrossRefGoogle Scholar
  56. Kassteele, J. V. D., Koelemeijer, R. B. A., Dekkers, A. L. M., Schaap, M., Homan, C. D., & Stein, A. (2006). Statistical mapping of PM10 concentrations over Western Europe using secondary information from dispersion modeling and MODIS satellite observations. Stochastic Environmental Research and Risk Assessment, 21(2), 183–194.CrossRefGoogle Scholar
  57. Kaufman, Y. J., & Joseph, J. H. (1982). Determination of surface albedos and aerosol extinction characteristics from satellite imagery. Journal of Geophysical Research: Oceans, 87(C2), 1287–1299.CrossRefGoogle Scholar
  58. Kaufman, Y. J., & Remer, L. A. (1994). Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Transactions on Geoscience and Remote Sensing, 32(3), 672–683.CrossRefGoogle Scholar
  59. Kaufman, Y. J., & Sendra, C. (1988). Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8), 1357–1381.CrossRefGoogle Scholar
  60. Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., Rudich, Y., & Ramanathan, V. (2005). The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11207–11212.CrossRefGoogle Scholar
  61. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686–692.CrossRefGoogle Scholar
  62. Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.CrossRefGoogle Scholar
  63. Kotarba, A. Z. (2016). Regional high-resolution cloud climatology based on MODIS cloud detection data. International Journal of Climatology, 36(8), 3105–3115.CrossRefGoogle Scholar
  64. Lazzarini, M., Marpu, P. R., & Ghedira, H. (2013). Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sensing of Environment, 130(4), 136–152.CrossRefGoogle Scholar
  65. Lee, J. T., Kim, H., Hong, Y. C., & Kwon, H. J. (2000). Air pollution and daily mortality in seven major cities of Korea, 1991-1997. Environmental Research, 84(3), 247–254.CrossRefGoogle Scholar
  66. Lee, H. J., Liu, Y., Coull, B. A., Schwartz, J., & Koutrakis, P. (2011a). A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmospheric Chemistry and Physics, 11(11), 9769–9795.Google Scholar
  67. Lee, H. J., Liu, Y., Coull, B. A., Schwartz, J., & Koutrakis, P. (2011b). A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmospheric Chemistry and Physics, 11(11), 9769–9795.Google Scholar
  68. Legrand, M., Desbois, M., & Vovor, K. (1988). Satellite detection of Saharan dust: Optimized imaging during nighttime. Journal of Climate, 1(3), 256–264.CrossRefGoogle Scholar
  69. Leung, A. O., Duzgorenaydin, N. S., Cheung, K. C., & Wong, M. H. (2008). Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environmental Science and Technology, 42(7), 2674–2680.CrossRefGoogle Scholar
  70. Levy, R. C., Remer, L. A., Kleidman, R. G., & Mattoo, S. (2010a). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics & Discussions, 10(6), 10399–10420.CrossRefGoogle Scholar
  71. Levy, R. C., Remer, L. A., Kleidman, R. G., & Mattoo, S. (2010b). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics and Discussions, 10(6), 10399–10420.CrossRefGoogle Scholar
  72. Levy, R. C., Mattoo, S., Munchak, L. A., & Remer, L. A. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989–3034.CrossRefGoogle Scholar
  73. Li, X. (2003). Retrieval method for optical thickness of aerosds over Beijing and its vicinity by using the Modis data. Acta Meteorologica Sinica, 61(5), 580–591. (in Chinese).Google Scholar
  74. Li, C., Mao, J., & Lau, K. H. (2003). Research on air pollution in Beijing and its surroundings with MODIS aerosol products. Chinese Journal of Atmospheric Sciences, 27(5), 419–430.Google Scholar
  75. Li, C. C., Mao, J. T., & Lau, A. K. (2005). Remote sensing of high spatial resolution aerosol optical depth with MODIS data over Hong Kong. Chinese Journal of Atmospheric Sciences, 29(3), 324–342. (in Chinese).Google Scholar
  76. Li, Z., Wang, Y., Zhou, Q., Wu, J., Peng, J., & Chang, H. (2008). Spatiotemporal variability of land surface moisture based on vegetation and temperature characteristics in Northern Shaanxi Loess Plateau, China. Journal of Arid Environments, 72(6), 974–985.CrossRefGoogle Scholar
  77. Li, N., Peng, X. W., & Zhang, B. Y. (2009). Relationship between air pollutant and daily hospital visits for respiratory diseases in Guangzhou: A time-series study. Journal of Environment and Health, 26(12), 1077–1080. (in Chinese).Google Scholar
  78. Liu, L., & Zhang, Y. (2011). Urban heat island analysis using the Landsat TM Data and ASTER Data: A case study in Hong Kong. Remote Sensing, 3(7), 1535–1552.CrossRefGoogle Scholar
  79. Liu, Y., Park, R. J., Jacob, D. J., Li, Q., Kilaru, V., & Sarnat, J. A. (2004a). Mapping annual mean ground-level PM2.5 concentrations using. Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States, Journal of Geophysical Research Atmospheres, 109(D22), 2285–2311.Google Scholar
  80. Liu, Y., Sarnat, J. A., Coull, B. A., Koutrakis, P., & Jacob, D. J. (2004b). Validation of Multiangle Imaging Spectroradiometer (MISR) aerosol optical thickness measurements using Aerosol Robotic Network (AERONET) observations over the contiguous United States. Journal of Geophysical Research Atmospheres, 109(D6), 127–128.CrossRefGoogle Scholar
  81. Liu, Y., Franklin, M., Kahn, R., & Koutrakis, P. (2007). Using aerosol optical thickness to predict ground-level PM 2.5, concentrations in the St. Louis area: A comparison between MISR and MODIS. Remote Sensing of Environment, 107(1–2), 33–44.CrossRefGoogle Scholar
  82. Lu, D., & Weng, Q. (2006). Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sensing of Environment, 104(2), 157–167.CrossRefGoogle Scholar
  83. Lu, D., Song, K., Zang, S., Jia, M., Du, J., & Ren, C. (2015). The effect of urban expansion on urban surface temperature in Shenyang, China: An analysis with Landsat Imagery. Environmental Modeling and Assessment, 20(3), 197–210.CrossRefGoogle Scholar
  84. Ma, J. Z., Ding, Z., Gates, J. B., & Su, Y. (2008). Chloride and the environmental isotopes as the indicators of the groundwater recharge in the Gobi Desert, northwest China. Environmental Geology, 55(7), 1407–1419.CrossRefGoogle Scholar
  85. Mallone, S., Stafoggia, M., Faustini, A., Gobbi, G. P., Marconi, A., & Forastiere, F. (2011). Saharan dust and associations between particulate matter and daily mortality in Rome, Italy. Environmental Health Perspectives, 119(10), 1409–1414.CrossRefGoogle Scholar
  86. Mao, J., Li, C., Zhang, J., & Lau, K. H. (2002). The comparison of remote sensing aerosol optical depth from MODIS data and Ground Sun-Photometer observation. Journal of Applied Meteorological Science, 13(s1), 127–135. (in Chinese).Google Scholar
  87. Martonchik, J. V. (1997). Determination of aerosol optical depth and land surface directional reflectances using multiangle imagery. Journal of Geophysical Research Atmospheres, 102(D14), 17015–17022.CrossRefGoogle Scholar
  88. Martonchik, J. V., & Diner, D. J. (1992). Retrieval of aerosol optical properties from multi-angle satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 223–230.CrossRefGoogle Scholar
  89. Martonchik, J. V., Diner, D. J., Kahn, R. A., Ackerman, T. P., Verstraete, M. M., & Pinty, B. (1998). Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1212–1227.CrossRefGoogle Scholar
  90. Masson, O., Piga, D., Gurriaran, R., & D’Amico, D. (2010). Impact of an exceptional Saharan dust outbreak in France: PM10 and artificial radionuclides concentrations in air and in dust deposit. Atmospheric Environment, 44(20), 2478–2486.CrossRefGoogle Scholar
  91. Matsui, T., Masunaga, H., Sr, R. A. P., & Tao, W. K. (2004). Impact of aerosols and atmospheric thermodynamics on cloud properties within the climate system. Geophysical Research Letters, 31(6), 315–336.CrossRefGoogle Scholar
  92. Mcmurry, P. H., Shepherd, M. F., & Vickery, J. S. (2004). Particulate matter science for policy makers: A NARSTO assessment. Cambridge: Cambridge University Press.Google Scholar
  93. Medinaramón, M., Zanobetti, A., & Schwartz, J. (2006). The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: A national multicity study. American Journal of Epidemiology, 163(6), 579–588.CrossRefGoogle Scholar
  94. Oguz, H. (2013). LST calculator: A program for retrieving land surface temperature from Landsat TM/ETM+ imagery. Environmental Engineering and Management Journal, 12(3), 549–555.CrossRefGoogle Scholar
  95. Okuyama, K., Shimada, M., Choi, M., & Han, B. (2005). Aerosol particle classification apparatus. US, US, 20050180543, A1.Google Scholar
  96. Perez-Padilla, R., Schilmann, A., & Riojas-Rodriguez, H. (2010). Respiratory health effects of indoor air pollution Review article. The International Journal of Tuberculosis and Lung Disease, 14(9), 1079–1086.Google Scholar
  97. Peterson, T. C. (2003). Assessment of urban versus rural in situ surface temperatures in the contiguous united states: No difference found. Journal of Climate, 16(18), 2941–2959.CrossRefGoogle Scholar
  98. Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association, 56(6), 709–742.CrossRefGoogle Scholar
  99. Pope, P. C., Bates, D. V., & Raizenne, M. E. (1995). Health effects of particulate air pollution: Time for reassessment? Environmental Health Perspectives, 103(5), 472–480.CrossRefGoogle Scholar
  100. Pope, C. A., Hill, R. W., & Villegas, G. M. (1999). Particulate air pollution and daily mortality on Utah's Wasatch Front. Environmental Health Perspectives, 107(7), 567–573.CrossRefGoogle Scholar
  101. Qiao, Z., Tian, G., & Xiao, L. (2013). Diurnal and seasonal impacts of urbanization on the urban thermal environment: A case study of Beijing using MODIS data. ISPRS Journal of Photogrammetry and Remote Sensing, 85(2), 93–101.CrossRefGoogle Scholar
  102. Qiu, J. (1995). A new method of determining atmospheric aerosol optical depth from the whole-spectral solar direct radiation, Part I: Theory. Scientia Atmospherica Sinica, 9(5), 385–394. (in Chinese).Google Scholar
  103. Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., & Martins, J. V. (2005). The MODIS aerosol algorithm, products, and validation. Journal of Atmospheric Sciences, 62(4), 947–973.CrossRefGoogle Scholar
  104. Remoundaki, E., Bourliva, A., Kokkalis, P., Mamouri, R. E., Papayannis, A., & Grigoratos, T. (2011). PM10 composition during an intense Saharan dust transport event over Athens (Greece). Science of the Total Environment, 409(20), 4361–4372.CrossRefGoogle Scholar
  105. Retalis, A., Hadjimitsis, D. G., Michaelides, S., & Tymvios, F. (2010). Comparison of aerosol optical thickness with in situ visibility data over Cyprus. Natural Hazards and Earth System Sciences, 10(3), 421–428.CrossRefGoogle Scholar
  106. Reuter, D. C., Richardson, C. M., Pellerano, F. A., Irons, J. R., Allen, R. G., & Anderson, M. (2015). The Thermal Infrared Sensor (TIRS) on Landsat 8: Design overview and pre-launch characterization. Remote Sensing, 7(1), 1135–1153.CrossRefGoogle Scholar
  107. Roy, D., Gautam, S., Singh, P., Singh, G., Das, B. K., & Patra, A. K. (2016). Carbonaceous species and physicochemical characteristics of PM 10, in coal mine fire area—A case study. Air Quality, Atmosphere and Health, 9(4), 429–437.CrossRefGoogle Scholar
  108. Samoli, E., Peng, R., Ramsay, T., Pipikou, M., Touloumi, G., & Dominici, F. (2008). Acute effects of ambient particulate matter on mortality in Europe and North America: Results from the APHENA study. Environmental Health Perspectives, 116(11), 1480.CrossRefGoogle Scholar
  109. Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., & Jeong, M. (2015a). MODIS Collection 6 aerosol products: Comparison between Aqua's e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. Journal of Geophysical Research Atmospheres, 119(24), 13965–13989.CrossRefGoogle Scholar
  110. Sayer, A. M., Hsu, N. C., Bettenhausen, C., Jeong, M. J., & Meister, G. (2015b). Effect of MODIS Terra radiometric calibration improvements on Collection 6 Deep Blue aerosol products: Validation and Terra/Aqua consistency. Journal of Geophysical Research, 120(23), 12157–12174.Google Scholar
  111. Schindler, C., Keidel, D., Gerbase, M. W., Zemp, E., Bettschart, R., & Brändli, O. (2009). Improvements in PM10 exposure and reduced rates of respiratory symptoms in a cohort of Swiss adults (SAPALDIA). American Journal of Respiratory and Critical Care Medicine, 179(7), 579–587.CrossRefGoogle Scholar
  112. Schmidt-Ott, A., & Büscher, P. (1991). In situ chemical classification of atmospheric aerosol particles. Journal of Aerosol Science, 22(6), S307.CrossRefGoogle Scholar
  113. Schwartz, J. (1993). Air pollution and daily mortality in Birmingham, Alabama. American Journal of Epidemiology, 137(10), 1136–1147.CrossRefGoogle Scholar
  114. Shi, T., Yang, Y., Ma, J., Zhang, L., & Luo, S. (2013). Spatial-temporal characteristics of urban heat Island in typical cities of Anhui Province Based on MODIS. Journal of Applied Meteorological Science, 24(4), 484–494. (in Chinese).Google Scholar
  115. Shiraiwa, M., Selzle, K., & Pöschl, U. (2012). Hazardous components and health effects of atmospheric aerosol particles: Reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radical Reserch, 46(8), 927–939.CrossRefGoogle Scholar
  116. Slater, J. F., Dibb, J. E., Campbell, J. W., & Moore, T. S. (2004). Physical and chemical properties of surface and column aerosols at a rural New England site during MODIS overpass. Remote Sensing of Environment, 92(2), 173–180.CrossRefGoogle Scholar
  117. Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440.CrossRefGoogle Scholar
  118. Song, C., Jia, L., & Menenti, M. (2014). Retrieving high-resolution surface soil moisture by downscaling AMSR-E brightness temperature using MODIS LST and NDVI Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(3), 935–942.CrossRefGoogle Scholar
  119. Srivastava, P. K., Majumdar, T. J., & Bhattacharya, A. K. (2009). Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Advances in Space Research, 43(10), 1563–1574.CrossRefGoogle Scholar
  120. Sun, D., & Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letters, 34(24), 497–507.CrossRefGoogle Scholar
  121. Sun, L., Liu, Q. H., Chen, L. F., & Liu, Q. (2006). The application of HJ-1 Hyperspectral Imaging Radiometer to retrieve aerosol optical thickness over land. Journal of Remote Sensing, 10(5), 770–776. (in Chinese).Google Scholar
  122. Sun, Y. L., Wang, Z. F., Fu, P. Q., & Yang, T. (2013). Aerosol composition, sources and processes during wintertime in Beijing, China. Atmospheric Chemistry and Physics Discussions, 13(9), 4577–4592.CrossRefGoogle Scholar
  123. Ta, W., Wang, T., Xiao, H., Zhu, X., & Xiao, Z. (2004). Gaseous and particulate air pollution in the Lanzhou Valley, China. Science of the Total Environment, 320(2–3), 163–176.CrossRefGoogle Scholar
  124. Tan, K. C., Lim, H. S., Matjafri, M. Z., & Abdullah, K. (2012). A comparison of radiometric correction techniques in the valuation of the relationship between LST and NDVI in Landsat imagery. Environmental Monitoring and Assessment, 184(6), 3813–3829.CrossRefGoogle Scholar
  125. Tanré, D., Devaux, C., Herman, M., & Santer, R. (1988a). Radiative properties of desert aerosols by optical ground-based measurements at solar wavelengths. Journal of Geophysical Research Atmospheres, 93(D11), 14223–14231.CrossRefGoogle Scholar
  126. Tanré, D., Devaux, C., Herman, M., Santer, R., & Gac, J. Y. (1988b). Radiative properties of desert aerosols by optical ground-based measurements at solar wavelengths. Journal of Geophysical Research: Atmospheres, 93(D11), 14223–14231.CrossRefGoogle Scholar
  127. Tanré, D., Herman, M., & Kaufman, Y. J. (1996). Information on aerosol size distribution contained in solar reflected spectral radiances. Journal of Geophysical Research: Atmospheres, 101(D14), 19043–19060.CrossRefGoogle Scholar
  128. Tanré, D., Remer, L. A., Kaufman, Y. J., Mattoo, S., Hobbs, P. V., & Livingston, J. M. (1999). Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS airborne simulator during TARFOX. Journal of Geophysical Research, 104(D2), 2261–2278.CrossRefGoogle Scholar
  129. Tao, Y., Mi, S., Zhou, S., Wang, S., & Xie, X. (2014). Air pollution and hospital admissions for respiratory diseases in Lanzhou. China, Environmental Pollution, 185, 196–201.CrossRefGoogle Scholar
  130. Tian, L., Ran-Ying, L. U., Xing, W. T., Wang, L., Wang, X., & Wang, W. (2005). Studies on city ambient air quality in china during 2001-2004. Journal of Arid Land Resources & Environment, 19(7), 101–105. (in Chinese).Google Scholar
  131. Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., & Bhartia, P. K. (2007a). Aerosols and surface UV products from ztions: An overview. Journal of Geophysical Research Atmospheres, 112(D24), 1–14.CrossRefGoogle Scholar
  132. Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., & Bhartia, P. K. (2007b). Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. Journal of Geophysical Research Atmospheres, 112(D24), 1–14.CrossRefGoogle Scholar
  133. Torres, O., Ahn, C., & Chen, Z. (2013). Improvements to the OMI near UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmospheric Measurement Techniques, 6(11), 3257–3270.CrossRefGoogle Scholar
  134. Tsai, S. S., Chang, C. C., & Yang, C. Y. (2013). Fine particulate air pollution and hospital admissions for chronic obstructive pulmonary disease: A case-crossover study in Taipe. International Journal of Environmental Research and Public Health, 10(11), 6015–6026.CrossRefGoogle Scholar
  135. Tsangari, H., Paschalidou, A. K., Kassomenos, A. P., Vardoulakis, S., Heaviside, C., & Georgiou, K. E. (2016). Extreme weather and air pollution effects on cardiovascular and respiratory hospital admissions in Cyprus. Science of the Total Environment, 542(Pt A), 247.CrossRefGoogle Scholar
  136. U.S. Environmental Protection Agency (US EPA). (2010). Module 3: Characteristics of particles – Aerodynamic diameter. Retrieved Nov 12, 2011, from
  137. Van der Zee, S., Hoek, G., Boezen, H. M., Schouten, J. P., Wijnen, J. H. V., & Brunekreef, B. (1999). Acute effects of urban air pollution on respiratory health of children with and without chronic respiratory symptoms. Occupational and Environmental Medicine, 56(12), 802–812.CrossRefGoogle Scholar
  138. Veefkind, J. P., Leeuw, G. D., & Durkee, P. A. (1998). Retrieval of aerosol optical depth over land using twoangle view satellite radiometry during TARFOX. Geophysical Research Letters, 25(16), 3135–3138.CrossRefGoogle Scholar
  139. Vinnikov, K. Y., Yu, Y., Raja, M. K. R. V., Dan, T., & Goldberg, M. D. (2008). Diurnal-seasonal and weather-related variations of land surface temperature observed from geostationary satellites. Geophysical Research Letters, 35(22), 113–130.CrossRefGoogle Scholar
  140. Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384.CrossRefGoogle Scholar
  141. Wan, Z., & Li, Z. L. (1997). A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 35(4), 980–996.CrossRefGoogle Scholar
  142. Wang, A. (1999). Recent trends on study of atmospheric aerosols. Environmental Chemistry, 1, 10–15.Google Scholar
  143. Wang, P. L. (2005). The study progress in the research for the particular in city air and its effect on human health. Environmental Monitoring in China, 21(1), 83–87. (in Chinese).Google Scholar
  144. Wang, J., & Christopher, S. A. (2003). Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophysical Research Letters, 30(21), 267–283.Google Scholar
  145. Wang, H. W., Lin, G., & Pan, X. D. (2003a). Association between total suspended particles (TSP) and cardiovascular disease mortality in Shenyang. Journal of Environment and Health, 20(1), 13–15. (in Chinese).Google Scholar
  146. Wang, X., Yang, S., Zhu, Y., & Yi, W. (2003b). Aerosol optical thickness retrieval over land From MODIS Data based on the inversion of the 6S Model. Chinese Journal of Quantum Electronics, 20(5), 629–634. (in Chinese).Google Scholar
  147. Wang, Z. T., Chen, L. F., & Zhang, Y. (2008). Urban surface aerosol monitoring using DDV method from MODIS data. Remote Sensing Technology and Application, 23(3), 284–288. (in Chinese).Google Scholar
  148. Wang, R. D., Zou, X. Y., Cheng, H., & Xiao-Xu, W. U. (2009a). Spatiotemporal characteristics of sand-dust weather and its influence factors in Hebei Province. Bulletin of Soil and Water Conservation, 2009(6), 57–63.Google Scholar
  149. Wang, Z. T., Li, Q., Tao, J. H., Li, S. S., Wang, Q., & Chen, L. F. (2009b). Monitoring of aerosol optical depth over land surface using CCD camera on HJ-1 satellite. China Environmental Science, 29(9), 902–907. (in Chinese).Google Scholar
  150. Wang, J., Xu, X., Spurr, R., Wang, Y., & Drury, E. (2010). Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China. Remote Sensing of Environment, 114(11), 2575–2583.CrossRefGoogle Scholar
  151. Wang, X., Zhang, C., Wang, H., Qian, G., Luo, W., & Lu, J. (2011). The significance of Gobi desert surfaces for dust emissions in China: An experimental study. Environmental Earth Sciences, 64(4), 1039–1050.CrossRefGoogle Scholar
  152. Wang, X., Hua, T., Zhang, C., Lang, L., & Wang, H. (2012). Aeolian salts in Gobi deserts of the western region of Inner Mongolia: Gone with the dust aerosols. Atmospheric Research, 118(3), 1–9.CrossRefGoogle Scholar
  153. Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., & Zhao, S. (2015a). An improved Mono-Window Algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sensing, 7(4), 4268–4289.CrossRefGoogle Scholar
  154. Wang, L., Zhao, Y., Yang, X., Jianmin, M. A., Huang, T., & Gao, H. (2015b). Prediction of air quality in Lanzhou Using Time Series Model and Residual Control Chart. Plateau Meteorology, 24(1), 97–103. (in Chinese).Google Scholar
  155. Wang, K., Jiang, S., Wang, J., Zhou, C., Wang, X., & Lee, X. (2017). Comparing the diurnal and seasonal variabilities of atmospheric and surface urban heat islands based on the Beijing urban meteorological network. Journal of Geophysical Research Atmospheres, 122(4), 2131–2154.CrossRefGoogle Scholar
  156. Wei, F. S., Teng, E. J., Wu, G. P., Hu, W., & Wilson, W. E. (2001). Concentrations and elemental components of PM2. 5, PM10 in ambient air in four large Chinese cities. Environmental Monitoring in China, 17(7), 1–6. (in Chinese).Google Scholar
  157. Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 335–344.CrossRefGoogle Scholar
  158. Weng, Q., & Quattrochi, D. A. (2006a). Thermal remote sensing of urban areas: An introduction to the special issue. Remote Sensing of Environment, 104(2), 119–122.CrossRefGoogle Scholar
  159. Weng, Q., & Quattrochi, D. A. (2006b). Thermal remote sensing of urban areas: An introduction to the special issue. Remote Sensing of Environment, 104(2), 119–122.CrossRefGoogle Scholar
  160. Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483.CrossRefGoogle Scholar
  161. WHO (World Health Organization). (2007). Health relevance of particulate matter from various sources: report on a WHO workshop, Bonn, Germany 26–27 March 2007. WHO Regional Office for Europe.
  162. Wilson, A. M., Wake, C. P., Kelly, T., & Salloway, J. C. (2005). Air pollution, weather, and respiratory emergency room visits in two northern New England cities: An ecological time-series study. Environmental Research, 97(3), 312–321.CrossRefGoogle Scholar
  163. Wong, T. W., Lau, T. S., Yu, T. S., Neller, A., Wong, S. L., & Tam, W. (1999). Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong. Occupational and Environmental Medicine, 56(10), 679–683.CrossRefGoogle Scholar
  164. World Health Organization. (2006). WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, summary of risk assessment. Geneva: World Health Organization.Google Scholar
  165. World Health Organization. (2015). Review of evidence on health aspects of air pollution – REVIHAAP Project: Final technical report. Geneva: World Health Organization.Google Scholar
  166. Wu, D. (2012). Hazy weather research in China in the last decade: A review. Acta Scientiae Circumstantiae, 32, 257–269.Google Scholar
  167. Xu, Y., Qin, Z., & Wan, H. (2010). Spatial and temporal dynamics of urban heat island and their relationship with land cover changes in urbanization process: A case study in Suzhou, China. Journal of the Indian Society of Remote Sensing, 38(4), 654–663.CrossRefGoogle Scholar
  168. Yang, J. S., Wang, Y. Q., & August, P. V. (2004). Estimation of land surface temperature using spatial interpolation and satellite-derived surface emissivity. Journal of Environmental Informatics, 4(1), 37–44.CrossRefGoogle Scholar
  169. Yi, Y., Yang, Z., & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159(10), 2575–2585.CrossRefGoogle Scholar
  170. Yu, Y., Xia, D. S., Chen, L. H., Liu, N., Chen, J. B., & Gao, Y. H. (2010). Analysis of particulate pollution characteristics and its causes in Lanzhou, Northwest China. Environmental Science, 31(1), 22. (in Chinese).Google Scholar
  171. Zhang, Y. P., & Jin-Fen, L. I. (2008). Exposure-response relationship between particulate pollution level and hospital outpatient visits in Taiyuan. Journal of Environment and Health, 25(6), 479–482. (in Chinese).Google Scholar
  172. Zhang, X. Y., Arimoto, R., Zhu, G. H., Chen, T., & Zhang, G. Y. (1998). Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus Series B-Chemical and Physical Meteorology, 50(4), 317–330.CrossRefGoogle Scholar
  173. Zhang, J., Si, Z., Mao, J., & Wang, M. (2003). Remote sensing aerosol optical depth over China with GMS-5 Satellite. Chinese Journal of Atmospheric Sciences, 27(1), 23–35. (in Chinese).Google Scholar
  174. Zhang, Z., Wang, J., Chen, L., Chen, X., Sun, G., & Zhong, N. (2014). Impact of haze and air pollution-related hazards on hospital admissions in Guangzhou, China. Environmental Science and Pollution Research, 21(6), 4236–4244.CrossRefGoogle Scholar
  175. Zhao, S., Qin, Q., Yang, Y., Xiong, Y., & Qiu, G. (2009). Comparison of two split-window methods for retrieving land surface temperature from MODIS data. Journal of Earth System Science, 118(4), 345–353.CrossRefGoogle Scholar
  176. Zhen, B. (2010). Characterization and Source Apportionment of PM_(2.5) and PM_(10) in Hangzhou. Environmental Monitoring in China, 26(2), 44–48. (in Chinese).Google Scholar
  177. Zheng, S., Zhao, X., Zhang, H., Qisheng, H. E., & Cao, C. (2011). Atmospheric correction on CCD data of HJ-1 satellite and analysis of its effect. Journal of Remote Sensing, 15(4), 709–721.Google Scholar
  178. Zheng, Y., Wang, Q., & Liang, Z. (2016). Aerosol retrieval and atmospheric correction of HJ-1 satellite CCD data over land surface of Taihu lake. Engineering of Surveying & Mapping, 25(5), 10–15. (in Chinese).Google Scholar
  179. Zhou, J., Chen, Y. H., Li, J., & Weng, Q. H. (2008). A volume model for urban heat island based on remote sensing imagery and its application: A case study in Beijing. Journal of Remote Sensing, 12(5), 734–742.Google Scholar
  180. Zhu, G., & Blumberg, D. G. (2002). Classification using ASTER data and SVM algorithms: The case study of Beer Sheva, Israel. Remote Sensing of Environment, 80(2), 233–240.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Mikalai Filonchyk
    • 1
  • Haowen Yan
    • 1
  1. 1.Department of Geographic Information Science, Faculty of GeomaticsLanzhou Jiaotong UniversityLanzhouChina

Personalised recommendations