Hip-Spine Effect: Hip Pathology Contributing to Lower Back, Posterior Hip, and Pelvic Pain

  • Anthony Nicholas KhouryEmail author
  • Juan Gómez-Hoyos
  • Hal D. Martin


Lumbar back pain symptoms affect nearly 80% of the global population. Current methods for diagnosis and treatment consider the lower back pain as a localized pathology based on patient complaints. A “kinematic chain” approach integrates a global sequence of how abnormal pathology is directly related to primary pain generation. The hip joint is the center axis for body movement. Any deviations in normal anatomy or function can directly influence body movement.

Ischiofemoral impingement, femoroacetabular impingement, and femoral version are hip diseases commonly diagnosed in orthopedic practice. Current treatment methods have been developed without a comprehensive knowledge of the inherent biomechanics associated with each pathology. To study these biomechanical changes, cadaveric models have been developed to simulate the abnormal anatomic discrepancies. The cadaveric model, as opposed to a computer simulation, was chosen based on the intricate relationship of the musculotendinous and ligamentous constraints associated with the lumbopelvic complex. The cadaveric model also allows for a direct translational approach of the measurement techniques as it accounts for deviations in the normal population.


Hip-spine Lower back pain Posterior hip and pelvic pain Limited hip extension Ischiofemoral impingement Femoral version Femoroacetabular impingement 


  1. 1.
    Huijbregts P. Lumbopelvic region: anatomy and biomechanics. In: Wadsworth C, editor. HSC 112 current concepts of orthopaedic physical therapy. LaCrosse, WI: Orthopaedic Section APTA; 2001.Google Scholar
  2. 2.
    Filler AG. Piriformis and related entrapment syndromes: diagnosis & management. Neurosurg Clin N Am. 2008;19(4):609–22.Google Scholar
  3. 3.
    Offierski CM, Macnab MB. Hip-spine syndrome. Spine (Phila Pa 1976). 1983;8(3):316–21.CrossRefGoogle Scholar
  4. 4.
    Devin CJ, Mccullough KA, Morris BJ, Yates AJ, Kang JD. Hip-spine syndrome. J Am Acad Orthop Surg. 2012;20:434–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Buckland AJ, Miyamoto R, Patel RD, Slover J, Razi AE. Differentiating hip pathology from lumbar spine pathology: key points of evaluation and management. J Am Acad Orthop Surg. 2017;25(2):23–34.Google Scholar
  6. 6.
    Ben-galim P, Ben-galim T, Rand N, et al. Hip-spine syndrome the effect of total hip replacement surgery on low back pain in severe osteoarthritis of the hip. Spine (Phila Pa 1976). 2007;32(19):2099–102.Google Scholar
  7. 7.
    Fogel GR, Esses SI. Hip spine syndrome: management of coexisting radiculopathy and arthritis of the lower extremity. Spine J. 2003;3:238–41.CrossRefPubMedGoogle Scholar
  8. 8.
    Matsuyama Y, Hasegawa Y, Yoshihara H, et al. Hip-spine syndrome: total sagittal alignment of the spine and clinical symptoms in patients with bilateral congenital hip dislocation. Spine (Phila Pa 1976). 2004;29(21):2432.Google Scholar
  9. 9.
    Redmond JM, Gupta A, Hammarstedt JE, Stake CE, Domb BG. The hip-spine syndrome: how does back pain impact the indications and outcomes of hip arthroscopy? Arthroscopy. 2014;30(7):872–81.Google Scholar
  10. 10.
    Lejkowski PM, Poulsen E. Elimination of intermittent chronic low back pain in a recreational golfer following improvement of hip range of motion impairments. J Bodyw Mov Ther. 2013;17(4):448–52.Google Scholar
  11. 11.
    Gebhart JJ, Weinberg DS, Conry KT, Morris WZ, Sasala LM, Liu RW. Hip-spine syndrome: is there an association between markers for cam deformity and osteoarthritis of the lumbar spine? Arthroscopy. 2016;32(11):1–6.CrossRefGoogle Scholar
  12. 12.
    Lamontagne M, Kennedy MJ, Beaulé PE. The effect of cam FAI on hip and pelvic motion during maximum squat. Clin Orthop Relat Res. 2009;467(3):645–50.Google Scholar
  13. 13.
    Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;417:112–20.Google Scholar
  14. 14.
    Goodman DA, Feighan JE, Smith AD, Latimer B, Buly RL, Cooperman DR. Subclinical slipped capital femoral epiphysis. Relationship to osteoarthrosis of the hip. J Bone Joint Surg Am. 1997;79(10):1489–97.Google Scholar
  15. 15.
    Ito K, Leunig M, Ganz R. Histopathologic features of the acetabular labrum in femoroacetabular impingement. Clin Orthop Relat Res. 2004;429:262–71.Google Scholar
  16. 16.
    Murray RO, Duncan C. Athletic activity in adolescence as an etiological factor in degenerative hip disease. J Bone Joint Surg Am. 1971;53(B(3)):406–19.Google Scholar
  17. 17.
    Schröder RG, Reddy M, Hatem MA, et al. A MRI study of the lesser trochanteric version and its relationship to proximal femoral osseous anatomy. J Hip Preserv Surg. 2015;2(4):410–6.Google Scholar
  18. 18.
    Torriani M, Souto SCL, Thomas BJ, Ouellette H, M a B. Ischiofemoral impingement syndrome: an entity with hip pain and abnormalities of the quadratus femoris muscle. AJR Am J Roentgenol. 2009;193(1):186–90.Google Scholar
  19. 19.
    Gómez-Hoyos J, Martin RRL, Schröder R, Palmer IJ, Martin HD. Accuracy of two clinical tests for ischiofemoral impingement in patients with posterior hip pain and endoscopically confirmed diagnosis. Arthroscopy. 2015:1–6.Google Scholar
  20. 20.
    Gómez-Hoyos J, Khoury AN, Schröder R, Johnson E, Palmer IJ, Martin HD. The hip-spine effect: a biomechanical study of ischiofemoral impingement effect on lumbar facet joints. Arthroscopy. 2016;33(1):101–7.Google Scholar
  21. 21.
    Popovich JM, Welcher JB, Hedman TP, et al. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity. Spine J. 2013;13(11):1581–9.Google Scholar
  22. 22.
    Jaumard NV, Welch WC, Winkelstein BA. Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions. J Biomech Eng. 2011;133(7):71010.Google Scholar
  23. 23.
    Yang KH, King AI. Mechanism of facet load transmission as a hypothesis for low-back pain. Spine (Phila Pa 1976). 1984;9(6):557–65.Google Scholar
  24. 24.
    Kalichman L, Hunter DJ. Lumbar facet joint osteoarthritis: a review. Semin Arthritis Rheum. 2007;37:69–80.Google Scholar
  25. 25.
    Elder BD, Vigneswaran K, Athanasiou KA, Kim DH. Biomechanical, biochemical, and histological characterization of canine lumbar facet joint cartilage NIH public access. Neurosurgery. 2010;66(4):722–7.Google Scholar
  26. 26.
    Haher TR, O’Brien M, Dryer JW, Nucci R, Zipnick R, Leone DJ. The role of the lumbar facet joints in spinal stability. Identification of alternative paths of loading. Spine (Phila Pa 1976). 1994;19(23):2667–70, discussion 2671.Google Scholar
  27. 27.
    McLain RF. Mechanoreceptor endings in human cervical facet joints. Spine (Phila Pa 1976). 1994;19(5):495–501.Google Scholar
  28. 28.
    Vandenabeele F, Creemers J, Lambrichts I, Lippens P, Jans M. Encapsulated Ruffini-like endings in human lumbar facet joints. J Anat. 1997;191:571–83.Google Scholar
  29. 29.
    McLain RF, Pickar JG. Mechanoreceptor endings in human thoracic and lumbar facet joints. Spine (Phila Pa 1976). 1998;23(2):168–73.Google Scholar
  30. 30.
    Chen C, Lu Y, Kallakuri S, Patwardhan A, Cavanaugh JM. Distribution of A-δ and C-fiber receptors in the cervical facet joint capsule and their response to stretch. J Bone Joint Surg Am. 2006;88(A):1807–16.Google Scholar
  31. 31.
    Miller F, Merlo M, Liang Y, Kupcha P, Jamison J, Harcke HT. Femoral version and neck shaft angle. J Pediatr Orthop. 1993;12:382–8.CrossRefGoogle Scholar
  32. 32.
    Tonnis D, Heinecke A. Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am. 1999;81(12):1747–70.CrossRefPubMedGoogle Scholar
  33. 33.
    Gulan G, Matovinovi D, Nemec B, Rubini D, Ravli J. Femoral neck anteversion: values, development, measurement, common problems. Coll Antropol. 2000;24(2):521–7.PubMedGoogle Scholar
  34. 34.
    Murphy SB, Simon SR, Kijewski PK, Wilkinson RH, Griscom NT. Femoral anteversion. J Bone Joint Surg Am. 1987;69(8):1169–76.Google Scholar
  35. 35.
    Krebs DE, Robbins CE, Lavine L, Mann RW. Hip biomechanics during gait. J Orthop Sports Phys Ther. 1998;28(1):51–9.Google Scholar
  36. 36.
    Gomez-Hoyos J, Khoury A, Schroder R, Marquez-arabia W, Palmer I, Martin H. The hip-spine effect part II: a biomechanical study of abnormal femoral neck version and the iliofemoral ligament effect on lumbar facet joint load. Arthroscopy. 2016. Submitted.Google Scholar
  37. 37.
    Martin H, Khoury A, Gomez-Hoyos J, Helal A, Fincher C, Jones A. Outcomes of femoral derotational osteotomy for decreased femoral anteversion: a case series. Santiago: International Society for Hip Arthroscopy; 2017.Google Scholar
  38. 38.
    Levangie PK, Norkin CC. Joint structure and function: a comprehensive analysis. 5th ed. Philadelphia: F.A. Davis; 2011.Google Scholar
  39. 39.
    Lazennec JY, Rousseau MA, Riwan F, et al. Relations hanche rachis: consequences fonctionnelles; applications aux arthroplasties totales de hanche. In: Le complexe lombo-pelvien De l’anatomie a la pathologie. Montpellier: Sauramps Medical; 2005. p. 115–45.Google Scholar
  40. 40.
    Husson J-L, Mallet J-F, Huten D, Odri G-A, Morin C, Parent H-F. The lumbar-pelvic-femoral complex: applications in hip pathology. Orthop Traumatol Surg Res. 2010;96(4):S10–6.Google Scholar
  41. 41.
    Martin HD, Savage A, Braly BA, Palmer IJ, Beall DP, Kelly B. The function of the hip capsular ligaments: a quantitative report. Arthroscopy. 2008;24(2):188–95.Google Scholar
  42. 42.
    Birmingham PM, Kelly BT, Jacobs R, McGrady L, Wang M. The effect of dynamic femoroacetabular impingement on pubic symphysis motion: a cadaveric study. Am J Sports Med. 2012;40(5):1113–8.Google Scholar
  43. 43.
    Kim SH, Kwon OY, Yi CH, Cynn HS, Ha SM, Park KN. Lumbopelvic motion during seated hip flexion in subjects with low-back pain accompanying limited hip flexion. Eur Spine J. 2014;23(1):142–8.Google Scholar
  44. 44.
    Ellison JB, Rose SJ, Sahrmann SA. Patterns of hip rotation range of motion: a comparison between healthy subjects and patients with low back pain. Phys Ther. 1990;70(9):537–41.Google Scholar
  45. 45.
    Esola MA, McClure PW, Fitzgerald GK, Siegler S. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain. Spine (Phila Pa 1976). 1996;21(1):71–8.Google Scholar
  46. 46.
    Sung PS. A compensation of angular displacements of the hip joints and lumbosacral spine between subjects with and without idiopathic low back pain during squatting. J Electromyogr Kinesiol. 2013;23:741–5.Google Scholar
  47. 47.
    Vad VB, Bhat AL, Basrai D, Gebeh A, Aspergren DD, Andrews JR. Low back pain in professional golfers the role of associated hip and low back range-of-motion deficits. Am J Sports Med. 2004;32(2):494–7.Google Scholar
  48. 48.
    Khoury A, Gomez-Hoyos J, Yeramaneni S, Martin HD. Biomechanical effect of anterior hip impingement on lumbar intradiscal pressure. Santiago: International Society for Hip Arthroscopy; 2017.Google Scholar
  49. 49.
    Shacklock M. Neurodynamics. Physiotherapy. 1995;81(1):9–16.CrossRefGoogle Scholar
  50. 50.
    Martin HD, Khoury AN, Schroder R, et al. The effects of hip abduction on sciatic nerve biomechanics during terminal hip flexion. J Hip Preserv Surg. 2017;4(2):178–86.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Merolli A, Mingarelli L, Rocchi L. A more detailed mechanism to explain the “bands of Fontana” in peripheral nerves. Muscle Nerve. 2012;46(4):540–7.Google Scholar
  52. 52.
    Clarke E, Bearn JG. The spiral nerve bands of Fontana. Brain. 1972;95(1):1–20.Google Scholar
  53. 53.
    Ushiki T, Ide C. Three-dimensional organization of the collagen fibrils in the rat sciatic nerve as revealed by transmission- and scanning electron microscopy. Cell Tissue Res. 1990;260(1):175–84.CrossRefPubMedGoogle Scholar
  54. 54.
    Roussouly P, Nnadi C. Sagittal plane deformity: an overview of interpretation and management. Eur Spine J. 2010;19(11):1824–36.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Anthony Nicholas Khoury
    • 1
    • 2
    Email author
  • Juan Gómez-Hoyos
    • 3
    • 4
    • 5
  • Hal D. Martin
    • 6
  1. 1.Hip Preservation CenterBaylor University Medical Center, Baylor Scott and White HealthDallasUSA
  2. 2.Bioengineering DepartmentUniversity of Texas at ArlingtonArlingtonUSA
  3. 3.International ConsultantHip Preservation Center / Baylor Scott and White Research Institute, Baylor University Medical CenterDallasUSA
  4. 4.Department of Orthopaedic Surgery - Health ProviderClínica Las Américas / Clínica del CampestreMedellinColombia
  5. 5.Professor - School of Medicine - Sports Medicine ProgramUniversidad de AntioquiaMedellínColombia
  6. 6.Medical and Research DirectorHip Preservation Center, Baylor University Medical CenterDallasUSA

Personalised recommendations