Advertisement

Biological Enhancement of X-Ray Effects

  • Ting Guo
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

This chapter discusses a new concept in X-ray nanochemistry – biological enhancement of X-ray effects using nanomaterials. Two types of biological enhancement are described here, and the rationale and principles of these two types are explained, followed by examples that provide the evidence for the existence of biological enhancement.

Keywords

Biological enhancement Cellular damage Damage to eukaryotic cells Damage to bacteria Type 1 biological enhancement Type 2 biological enhancement 

References

  1. 1.
    Butterworth, K. T., McMahon, S. J., Currell, F. J., & Prise, K. M. (2012). Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale, 4, 4830–4838.CrossRefPubMedGoogle Scholar
  2. 2.
    Brun, E., & Sicard-Roselli, C. (2016). Actual questions raised by nanoparticle radiosensitization. Radiation Physics and Chemistry, 128, 134–142.CrossRefGoogle Scholar
  3. 3.
    Youkhana, E., Feltis, B., Blencowe, A., & Geso, M. (2017). Titanium dioxide nanoparticles as radiosensitisers: An in vitro and phantom-based study. International Journal of Medical Sciences, 14, 602–614.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rosa, S., Connolly, C., Schettino, G., Butterworth, K. T., & Prise, K. (2017). Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnology, 8(1), 2.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mohr, D., Frey, S., Fischer, T., Guttler, T., & Gorlich, D. (2009). Characterisation of the passive permeability barrier of nuclear pore complexes. The EMBO Journal, 28, 2541–2553.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Taggart, L. E., McMahon, S. J., Butterworth, K. T., Currell, F. J., Schettino, G., & Prise, K. M. (2016). Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation. Nanotechnology, 27, 215101.CrossRefPubMedGoogle Scholar
  7. 7.
    Luo, Y., Hossain, M., Wang, C. M., Qiao, Y., An, J. C., Ma, L. Y., & Su, M. (2013). Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Nanoscale, 5, 687–694.CrossRefPubMedGoogle Scholar
  8. 8.
    Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49, N309–N315.CrossRefPubMedGoogle Scholar
  9. 9.
    Hainfeld, J. F., Slatkin, D. N., Focella, T. M., & Smilowitz, H. M. (2006). Gold nanoparticles: A new X-ray contrast agent. The British Journal of Radiology, 79, 248–253.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang, X. J., Xing, J. Z., Chen, J., Ko, L., Amanie, J., Gulavita, S., Pervez, N., Yee, D., Moore, R., & Roa, W. (2008). Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clinical and Investigative Medicine, 31, E160–E167.CrossRefPubMedGoogle Scholar
  11. 11.
    Roa, W., Zhang, X. J., Guo, L. H., Shaw, A., Hu, X. Y., Xiong, Y. P., Gulavita, S., Patel, S., Sun, X. J., Chen, J., Moore, R., & Xing, J. Z. (2009). Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle. Nanotechnology, 20(375101), 1–9.Google Scholar
  12. 12.
    Chithrani, D. B., Jelveh, S., Jalali, F., van Prooijen, M., Allen, C., Bristow, R. G., Hill, R. P., & Jaffray, D. A. (2010). Gold nanoparticles as radiation sensitizers in cancer therapy. Radiation Research, 173, 719–728.CrossRefPubMedGoogle Scholar
  13. 13.
    Geng, F., Song, K., Xing, J. Z., Yuan, C. Z., Yan, S., Yang, Q. F., Chen, J., & Kong, B. H. (2011). Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology, 22(285101), 1–8.Google Scholar
  14. 14.
    Li, Y. J., Perkins, A. L., Su, Y., Ma, Y. L., Colson, L., Horne, D. A., & Chen, Y. (2012). Gold nanoparticles as a platform for creating a multivalent poly-SUMO chain inhibitor that also augments ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America, 109, 4092–4097.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rahman, W. N., Corde, S., Yagi, N., Aziz, S. A. A., Annabell, N., & Geso, M. (2014). Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. International Journal of Nanomedicine, 9, 2459–2467.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang, X. D., Luo, Z. T., Chen, J., Song, S. S., Yuan, X., Shen, X., Wang, H., Sun, Y. M., Gao, K., Zhang, L. F., Fan, S. J., Leong, D. T., Guo, M. L., & Xie, J. P. (2015). Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Scientific Reports UK, 5, 8669.CrossRefGoogle Scholar
  17. 17.
    Li, Y. Y., Wang, Z. L., Liu, X. X., Tang, J. Y., Peng, B., & Wei, Y. Q. (2016). X-ray irradiated vaccine confers protection against pneumonia caused by pseudomonas aeruginosa. Scientific Reports UK, 6, 18823.CrossRefGoogle Scholar
  18. 18.
    Hossain, M., & Su, M. (2012). Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy. Journal of Physical Chemistry C, 116, 23047–23052.CrossRefGoogle Scholar
  19. 19.
    Lim, S. N., Pradhan, A. K., Barth, R. F., Nahar, S. N., Nakkula, R. J., Yang, W. L., Palmer, A. M., Turro, C., Weldon, M., Bell, E. H., & Mo, X. (2015). Tumoricidal activity of low-energy 160-KV versus 6-MV X-rays against platinum-sensitized F98 glioma cells. Journal of Radiation Research (Tokyo), 56, 77–89.CrossRefGoogle Scholar
  20. 20.
    Her, S., Cui, L., Bristow, R. G., & Allen, C. (2016). Dual action enhancement of gold nanoparticle Radiosensitization by Pentamidine in triple negative breast cancer. Radiation Research, 185, 549–562.CrossRefPubMedGoogle Scholar
  21. 21.
    Coulter, J. A., Butterworth, K. T., & Jain, S. (2015). Prostate cancer radiotherapy: Potential applications of metal nanoparticles for imaging and therapy. The British Journal of Radiology, 88, 20150256.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Xie, W. Z., Friedland, W., Li, W. B., Li, C. Y., Oeh, U., Qiu, R., Li, J. L., & Hoeschen, C. (2015). Simulation on the molecular radiosensitization effect of gold nanoparticles in cells irradiated by x-rays. Physics in Medicine and Biology, 60, 6195–6212.CrossRefPubMedGoogle Scholar
  23. 23.
    Friedland, W., Dingfelder, M., Kundrat, P., & Jacob, P. (2011). Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutation Research Fundamental and Molecular Mechanisms of Mutagenesis, 711, 28–40.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ting Guo
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations