Chemical Enhancement

  • Ting Guo
Part of the Nanostructure Science and Technology book series (NST)


Chemical enhancement is formally introduced in this chapter. A brief introduction is given to discuss a few leads to the existence of chemical enhancement. Two type of chemical enhancement are described, both of which depends on catalysis. The reactions that support type 1 chemical enhancement are discussed. The role of scavengers on at least type 1 chemical enhancement is explained. Evidence for type 2 chemical enhancement is given and discussed. Other possible types of chemical enhancement are also briefly discussed.


Catalysis Chemical enhancement Heterogeneous catalysis Metal nanoparticles Physical enhancement X-ray activated catalysis 


  1. 1.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.CrossRefPubMedGoogle Scholar
  2. 2.
    McMahon, S. J., Hyland, W. B., Brun, E., Butterworth, K. T., Coulter, J. A., Douki, T., Hirst, D. G., Jain, S., Kavanagh, A. P., Krpetic, Z., Mendenhall, M. H., Muir, M. F., Prise, K. M., Requardt, H., Sanche, L., Schettino, G., Currell, F. J., & Sicard-Roselli, C. (2011). Energy dependence of gold nanoparticle radiosensitization in plasmid DNA. Journal of Physical Chemistry C, 115, 20160–20167.CrossRefGoogle Scholar
  3. 3.
    Misawa, M., & Takahashi, J. (2011). Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine: Nanotechnology, 7, 604–614.CrossRefGoogle Scholar
  4. 4.
    Cheng, N. N., Starkewolf, Z., Davidson, A. R., Sharmah, A., Lee, C., Lien, J., & Guo, T. (1950). Chemical enhancement by nanomaterials under X-ray irradiation. Journal of the American Chemical Society, 2012(134), 1950–1953.Google Scholar
  5. 5.
    Makrigiorgos, G. M., Baranowskakortylewicz, J., Bump, E., Sahu, S. K., Berman, R. M., & Kassis, A. I. (1993). A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of coumarin. International Journal of Radiation Biology, 63, 445–458.CrossRefPubMedGoogle Scholar
  6. 6.
    Louit, G., Foley, S., Cabillic, J., Coffigny, H., Taran, F., Valleix, A., Renault, J. P., & Pin, S. (2005). The reaction of coumarin with the OH radical revisited: Hydroxylation product analysis determined by fluorescence and chromatography. Radiation Physics and Chemistry, 72, 119–124.CrossRefGoogle Scholar
  7. 7.
    Sicard-Roselli, C., Brun, E., Gilles, M., Baldacchino, G., Kelsey, C., McQuaid, H., Polin, C., Wardlow, N., & Currell, F. (2014). A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions. Small, 10, 3338–3346.CrossRefPubMedGoogle Scholar
  8. 8.
    Gilles, M., Brun, E., & Sicard-Roselli, C. (2014). Gold nanoparticles functionalization notably decreases radiosensitization through hydroxyl radical production under ionizing radiation. Colloids and Surfaces B: Biointerfaces, 123, 770–777.CrossRefPubMedGoogle Scholar
  9. 9.
    Davidson, R. A., & Guo, T. (2012). An example of X-ray nanochemistry: SERS investigation of polymerization enhanced by nanostructures under X-ray irradiation. Journal of Physical Chemistry Letters, 3, 3271–3275.CrossRefGoogle Scholar
  10. 10.
    Alqathami, M., Blencowe, A., Yeo, U. J., Doran, S. J., Qiao, G., & Geso, M. (2012). Novel multicompartment 3-dimensional radiochromic radiation dosimeters for nanoparticle-enhanced radiation therapy dosimetry. International Journal of Radiation Oncology Biology Physics, 84, E549–E555.CrossRefGoogle Scholar
  11. 11.
    Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., Nicolucci, P., & Baffa, O. (2012). Synthesis and characterization of gold/alanine nanocomposites with potential properties for medical application as radiation sensors. ACS Applied Materials & Interfaces, 4, 5844–5851.CrossRefGoogle Scholar
  12. 12.
    Guidelli, E. J., & Baffa, O. (2014). Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach. Medical Physics, 41(032101), 1–8.Google Scholar
  13. 13.
    Paudel, N., Shvydka, D., & Parsai, E. I. (2015). Comparative study of experimental enhancement in free radical generation against Monte Carlo modeled enhancement in radiation dose position due to the presence of high Z materials during irradiation of aqueous media. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 4, 300–307. 300.CrossRefGoogle Scholar
  14. 14.
    Esumi, K., Takei, N., & Yoshimura, T. (2003). Antioxidant-potentiality of gold-chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces, 32, 117–123.CrossRefGoogle Scholar
  15. 15.
    Nie, Z., Liu, K. J., Zhong, C. J., Wang, L. F., Yang, Y., Tian, Q., & Liu, Y. (2007). Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: A novel inspiration for development of new artificial antioxidants. Free Radical Biology & Medicine, 43, 1243–1254.CrossRefGoogle Scholar
  16. 16.
    Chang, J., Taylor, R. D., Davidson, R. A., Sharmah, A., & Guo, T. (2016). Electron paramagnetic resonance spectroscopy investigation of radical production by gold nanoparticles in aqueous solutions under X-ray irradiation. Journal of Physical Chemistry A, 120, 2815–2823.CrossRefGoogle Scholar
  17. 17.
    Sharmah, A., Mukherjee, S., Yao, Z., Lu, L., & Guo, T. (2016). Concentration-dependent association between weakly attractive nanoparticles in aqueous solutions. Journal of Physical Chemistry C, 120, 19830–19836.CrossRefGoogle Scholar
  18. 18.
    You, H. J., Yang, S. C., Ding, B. J., & Yang, H. (2013). Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chemical Society Reviews, 42, 2880–2904.CrossRefPubMedGoogle Scholar
  19. 19.
    Bond, G. C., Louis, C., & Thompson, D. T. (2006). Catalysis by gold, G. J. Hutchings (p. 366). Catalytic Science Series, Vol. 6. London: Imperial College Press.Google Scholar
  20. 20.
    Ionita, P., Gilbert, B. C., & Chechik, V. (2005). Radical mechanism of a place-exchange reaction of an nanoparticles. Angewandte Chemie, International Edition, 44, 3720–3722.CrossRefGoogle Scholar
  21. 21.
    Zhang, Z. F., Cui, H., Lai, C. Z., & Liu, L. J. (2005). Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Analytical Chemistry, 77, 3324–3329.CrossRefPubMedGoogle Scholar
  22. 22.
    Duan, C. F., Cui, H., Zhang, Z. F., Liu, B., Guo, J. Z., & Wang, W. (2007). Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. Journal of Physical Chemistry C, 111, 4561–4566.CrossRefGoogle Scholar
  23. 23.
    Lambert, R. M., Turner, M., Golovko, V. B., Vaughan, O. P. H., Abdulkin, P., Berenguer-Murcia, A., Tikhov, M. S., & Johnson, B. F. G. (2008). Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature, 454, 981–U931.CrossRefPubMedGoogle Scholar
  24. 24.
    Ito, S., Miyoshi, N., Degraff, W. G., Nagashima, K., Kirschenbaum, L. J., & Riesz, P. (2009). Enhancement of 5-Aminolevulinic acid-induced oxidative stress on two cancer cell lines by gold nanoparticles. Free Radical Research, 43, 1214–1224.CrossRefPubMedGoogle Scholar
  25. 25.
    Cao, R., Cao, R., Villalonga, R., Diaz-Garcia, A. M., Rojo, T., & Rodriguez-Arguelles, M. C. (2011). Gold nanoparticles enhancing dismutation of superoxide radical by its bis(dithiocarbamato) copper(II) shell. Inorganic Chemistry, 50, 4705–4712.CrossRefPubMedGoogle Scholar
  26. 26.
    He, W. W., Zhou, Y. T., Warner, W. G., Hu, X. N., Wu, X. C., Zheng, Z., Boudreau, M. D., & Yin, J. J. (2013). Intrinsic catalytic activity of au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials, 34, 765–773.CrossRefPubMedGoogle Scholar
  27. 27.
    Wen, T., He, W. W., Chong, Y., Liu, Y., Yin, J. J., & Wu, X. C. (2015). Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: Implications for biomedical applications. Physical Chemistry Chemical Physics, 17, 24937–24943.CrossRefPubMedGoogle Scholar
  28. 28.
    Gara, P. M. D., Garabano, N. I., Portoles, M. J. L., Moreno, M. S., Dodat, D., Casas, O. R., Gonzalez, M. C., & Kotler, M. L. (2012). ROS enhancement by silicon nanoparticles in X-ray irradiated aqueous suspensions and in glioma C6 cells. Journal of Nanoparticle Research, 14, 741.CrossRefGoogle Scholar
  29. 29.
    Seo, S. J., Han, S. M., Cho, J. H., Hyodo, K., Zaboronok, A., You, H., Peach, K., Hill, M. A., & Kim, J. K. (2015). Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: Implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Radiation and Environmental Biophysics, 54, 423–431.CrossRefPubMedGoogle Scholar
  30. 30.
    Cadet, J., & Wagner, J. R. (2016). Radiation-induced damage to cellular DNA: Chemical nature and mechanisms of lesion formation. Radiation Physics and Chemistry, 128, 54–59.CrossRefGoogle Scholar
  31. 31.
    Burrows, C. J., & Muller, J. G. (1998). Oxidative nucleobase modifications leading to strand scission. Chemical Reviews, 98, 1109–1151.CrossRefPubMedGoogle Scholar
  32. 32.
    Nishimura, S., Anh, T. N. D., Mott, D., Ebitani, K., & Maenosono, S. (2012). X-ray absorption near-edge structure and X-ray photoelectron spectroscopy studies of interfacial charge transfer in gold-silver-gold double-shell nanoparticles. Journal of Physical Chemistry C, 116, 4511–4516.CrossRefGoogle Scholar
  33. 33.
    Ionita, P., Spafiu, F., & Ghica, C. (2008). Dual behavior of gold nanoparticles, as generators and scavengers for free radicals. Journal of Materials Science, 43, 6571–6574.CrossRefGoogle Scholar
  34. 34.
    Zhang, Z. Y., Berg, A., Levanon, H., Fessenden, R. W., & Meisel, D. (2003). On the interactions of free radicals with gold nanoparticles. Journal of the American Chemical Society, 125, 7959–7963.CrossRefPubMedGoogle Scholar
  35. 35.
    Hamasaki, T., Kashiwagi, T., Imada, T., Nakamichi, N., Aramaki, S., Toh, K., Morisawa, S., Shimakoshi, H., Hisaeda, Y., & Shirahata, S. (2008). Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir, 24, 7354–7364.CrossRefPubMedGoogle Scholar
  36. 36.
    Watanabe, A., Kajita, M., Kim, J., Kanayama, A., Takahashi, K., Mashino, T., & Miyamoto, Y. (2009). In vitro free radical scavenging activity of platinum nanoparticles. Nanotechnology, 20, 455105.CrossRefPubMedGoogle Scholar
  37. 37.
    Sahbani, S. K., Cloutier, P., Bass, A. D., Hunting, D. J., & Sanche, L. (2015). Electron resonance decay into a biological function: Decrease in viability of E-coli transformed by plasmid DNA irradiated with 0.5-18 eV electrons. Journal of Physical Chemistry Letters, 6, 3911–3914.CrossRefGoogle Scholar
  38. 38.
    Radiation damage: A new understanding. In Current research on molecular processing.
  39. 39.
    Davidson, R. A., & Guo, T. (2015). Multiplication algorithm for combined physical and chemical enhancement of X-ray effect by nanomaterials. Journal of Physical Chemistry, 119, 19513–19519.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ting Guo
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations