Physical Enhancement of the Effectiveness of X-Ray Irradiation

  • Ting Guo
Part of the Nanostructure Science and Technology book series (NST)


Physical enhancement is introduced in this chapter, including the motivation and history behind this new concept. Basic physical principles are presented before the discussion of three types of physical enhancement. The main focus of the chapter is how to design to measure, to recognize and to calculate physical enhancement, when it is possible. Theoretical packages used to simulate physical enhancement are accounted, and to date, physical enhancement is the only one that can be fully predicted using these packages. Publications are reviewed to explain important aspects of physical enhancement. Types 1, 2 and 3 physical enhancement are discussed in separate sections, and literature on these processes is accounted.


Auger electrons Auger processes Compton electrons Compton scattering Geant4 Hydroxyl radicals LEM LLSG Local enhancement model Mass attenuation coefficients Mass energy absorption coefficients Monte Carlo NOREC Photoelectric effect Photoelectrons Type 1 physical enhancement Type 2 physical enhancement Type 3 physical enhancement 


  1. 1.
    Castillo, M. H., Button, T. M., Doerr, R., Homs, M. I., Pruett, C. W., & Pearce, J. I. (1988). Effects of radiotherapy on mandibular reconstruction plates. American Journal of Surgery, 156, 261–263.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Regulla, D. F., Hieber, L. B., & Seidenbusch, M. (1998). Physical and biological interface dose effects in tissue due to X-ray-induced release of secondary radiation from metallic gold surfaces. Radiation Research, 150, 92–100.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Regulla, D., Schmid, E., Friedland, W., Panzer, W., Heinzmann, U., & Harder, D. (2002). Enhanced values of the RBE and H ratio for cytogenetic effects induced by secondary electrons from an X-irradiated gold surface. Radiation Research, 158, 505–515.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Herold, D. M., Das, I. J., Stobbe, C. C., Iyer, R. V., & Chapman, J. D. (2000). Gold microspheres: A selective technique for producing biologically effective dose enhancement. International Journal of Radiation Biology, 76, 1357–1364.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Karnas, S. J., Moiseenko, V. V., Yu, E., Truong, P., & Battista, J. J. (2001). Monte Carlo simulations and measurement of DNA damage from x-ray-triggered Auger cascades in iododeoxyuridine (IUdR). Radiation and Environmental Biophysics, 40, 199–206.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49, N309–N315.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.Google Scholar
  8. 8.
    Guo, T. (2002). Gold metal nanoparticles as high affinity anti-cancer agent for photon activation therapy, Submitted to Cancer Research Coordinating Committee, Jan 2002: UC Davis.Google Scholar
  9. 9.
    Guo, T. (2004). Nanoparticle enhanced X-ray therapy. In ACS annual meeting. Philadelphia.Google Scholar
  10. 10.
    Kunzel, R., Okuno, E., Levenhagen, R. S., & Umisedo, N. K. (2013). Evaluation of the X-ray absorption by gold nanoparticles solutions. Nanotechnology, 203(5), 865283.Google Scholar
  11. 11.
    Nahar, S. N., Pradhan, A. K., & Lim, S. (2011). K-alpha transition probabilities for platinum and uranium ions for possible X-ray biomedical applications. Canadian Journal of Physics, 89, 483–494.CrossRefGoogle Scholar
  12. 12.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee, C., Cheng, N. N., Davidson, R. A., & Guo, T. (2012). Geometry enhancement of nanoscale energy deposition by x-rays. Journal of Physical Chemistry C, 116, 11292–11297.CrossRefGoogle Scholar
  14. 14.
    Sharmah, A., Yao, Z., Lu, L., & Guo, T. (2016). X-ray-induced energy transfer between nanomaterials under X-ray irradiation. Journal of Physical Chemistry C, 120, 3054–3060.CrossRefGoogle Scholar
  15. 15.
    Casta, R., Champeaux, J. P., Moretto-Capelle, P., Sence, M., & Cafarelli, P. (2015). Electron and photon emissions from gold nanoparticles irradiated by X-ray photons. Journal of Nanoparticle Research, 17, 3.Google Scholar
  16. 16.
    Incerti, S., Suerfu, B., Xu, J., Ivantchenko, V., Mantero, A., Brown, J. M. C., Bernal, M. A., Francis, Z., Karamitros, M., & Tran, H. N. (2016). Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 372, 91–101.CrossRefGoogle Scholar
  17. 17.
    Gadoue, S. M., Toomeh, D., Zygmanski, P., & Sajo, E. (2017). Angular dose anisotropy around gold nanoparticles exposed to X-rays. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 1653–1661.CrossRefGoogle Scholar
  18. 18.
    Kabachnik, N. M., & Sazhina, I. P. (1996). Non-dipolar effects in angular distributions of photoinduced Auger electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 29, L515–L519.CrossRefGoogle Scholar
  19. 19.
    Misawa, M., & Takahashi, J. (2011). Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomedicine: Nanotechnology, Biology and Medicine, 7, 604–614.CrossRefGoogle Scholar
  20. 20.
    Byrne, H. L., Gholami, Y., & Kuncic, Z. (2017). Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement. Physics in Medicine and Biology, 62, 3097–3110.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Joy, D., & Luo, S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning, 11, 176–180.CrossRefGoogle Scholar
  22. 22.
    Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., et al. (2003). GEANT4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A, 506, 250–303.CrossRefGoogle Scholar
  23. 23.
    Pattison, J. E., Hugtenburg, R. P., & Green, S. (2010). Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body. Journal of the Royal Society Interface, 7, 603–611.CrossRefGoogle Scholar
  24. 24.
    Champeaux, R. C. J. P., Sence, M., Moretto-Capelle, P., & Cafarelli, P. (2015). Comparison between gold nanoparticle and gold plane electron emissions: A way to identify secondary electron emission. Physics in Medicine and Biology, 60, 9095–9105.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Seo, S. J., Han, S. M., Cho, J. H., Hyodo, K., Zaboronok, A., You, H., Peach, K., Hill, M. A., & Kim, J. K. (2015). Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: Implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Radiation and Environmental Biophysics, 54, 423–431.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    You, D., Fukuzawa, H., Sakakibara, Y., Takanashi, T., Ito, Y., Maliyar, G. G., Motomura, K., Nagaya, K., Nishiyama, T., Asa, K., et al. (2017). Charge transfer to ground-state ions produces free electrons. Nature Communications, 8, 14277.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Alizadeh, E., & Sanche, L. (2012). Absolute measurements of radiation damage in nanometer-thick films. Radiation Protection Dosimetry, 151, 591–599.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Viefhaus, J., Cvejanovic, S., Langer, B., Lischke, T., Prumper, G., Rolles, D., Golovin, A. V., Grum-Grzhimailo, A. N., Kabachnik, N. M., & Becker, U. (2004). Energy and angular distributions of electrons emitted by direct double Auger decay. Physical Review Letters, 92, 083001.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Clement, S., Deng, W., Camilleri, E., Wilson, B. C., & Goldys, E. M. (2016). X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: Determination of singlet oxygen quantum yield. Scientific Report-UK, 6, 19954Google Scholar
  30. 30.
    Kamkaew, A., Chen, F., Zhan, Y. H., Majewski, R. L., & Cai, W. B. (2016). Scintillating nanoparticles as energy mediators for enhanced photodynamic therapy. ACS Nano, 10, 3918–3935.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hainfeld, J. F., Slatkin, D. N., Focella, T. M., & Smilowitz, H. M. (2006). Gold nanoparticles: A new X-ray contrast agent. The British Journal of Radiology, 79, 248–253.CrossRefPubMedGoogle Scholar
  32. 32.
    Tu, S. J., Yang, P. Y., Hong, J. H., & Lo, C. J. (2013). Quantitative dosimetric assessment for effect of gold nanoparticles as contrast media on radiotherapy planning. Radiation Physics and Chemistry, 88, 14–20.CrossRefGoogle Scholar
  33. 33.
    Cho, S. H. (2005). Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Physics in Medicine and Biology, 50, N163–N173.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Yoshida, T., Tanabe, T., Chen, A., Miyashita, Y., Yoshida, H., Hattori, T., & Sawasaki, T. (2003). Method for the degradation of dibutyl phthalate in water by gamma-ray irradiation. Journal of Radioanalytical and Nuclear Chemistry, 255, 265–269.CrossRefGoogle Scholar
  35. 35.
    Yoshida, T., Tanabe, T., Okabe, Y., Sawasaki, T., & Chen, A. (2005). Decomposition of carbon dioxide by metals during gamma irradiation. Radiation Research, 164, 332–335.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Cho, S. H., Jones, B. L., & Krishnan, S. (2009). The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma−/x-ray sources. Physics in Medicine and Biology, 54, 4889–4905.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jones, B. L., Krishnan, S., & Cho, S. H. (2010). Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Medical Physics, 37, 3809–3816.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Roeske, J. C., Nunez, L., Hoggarth, M., Labay, E., & Weichselbaum, R. R. (2007). Characterization of the theorectical radiation dose enhancement from nanoparticles. Technology in Cancer Research & Treatment, 6, 395–401.CrossRefGoogle Scholar
  39. 39.
    McMahon, S. J., Mendenhall, M. H., Jain, S., & Currell, F. (2008). Radiotherapy in the presence of contrast agents: A general figure of merit and its application to gold nanoparticles. Physics in Medicine and Biology, 53, 5635–5651.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Montenegro, M., Nahar, S. N., Pradhan, A. K., Huang, K., & Yu, Y. (2009). Monte Carlo simulations and atomic calculations for Auger processes in biomedical nanotheranostics. The Journal of Physical Chemistry. A, 113, 12364–12369.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Yusa, N., Jiang, M., Mizuno, K., & Uesaka, M. (2009). Numerical evaluation of the effectiveness of colloidal gold as a contrast agent. Radiological Physics and Technology, 2, 33–39.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Zhang, S. X., Gao, J. F., Buchholz, T. A., Wang, Z. L., Salehpour, M. R., Drezek, R. A., & Yu, T. K. (2009). Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: A Monte Carlo simulation study. Biomedical Microdevices, 11, 925–933.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Ouerdane, H., Gervais, B., Zhou, H., Beuve, M., & Renault, J. P. (2010). Radiolysis of water confined in porous silica: A simulation study of the physicochemical yields. Journal of Physical Chemistry C, 114, 12667–12674.CrossRefGoogle Scholar
  44. 44.
    Gokeri, G., Kocar, C., & Tombakoglu, M. (2010). Monte Carlo simulation of microbeam radiation therapy with an interlaced irradiation geometry and an au contrast agent in a realistic head phantom. Physics in Medicine and Biology, 55, 7469–7487.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Van den Heuvel, F., Locquet, J. P., & Nuyts, S. (2010). Beam energy considerations for gold nano-particle enhanced radiation treatment. Physics in Medicine and Biology, 55, 4509–4520.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O'Sullivan, J. M., et al. (2011). Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy. Radiotherapy and Oncology, 100, 412–416.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    McMahon, S. J., Hyland, W. B., Muir, M. F., Coulter, J. A., Jain, S., Butterworth, K. T., Schettino, G., Dickson, G. R., Hounsell, A. R., O’Sullivan, J. M., et al. (2011). Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports-UK, 1.
  48. 48.
    Lechtman, E., Chattopadhyay, N., Cai, Z., Mashouf, S., Reilly, R., & Pignol, J. P. (2011). Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Physics in Medicine and Biology, 56, 4631–4647.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Amato, E., Italiano, A., Leotta, S., Pergolizzi, S., & Torrisi, L. (2013). Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels. Journal of X-ray Science and Technology, 21, 237–247.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Mesbahi, A., Jamali, F., & Gharehaghaji, N. (2013). Effect of photon beam energy, gold nanoparticle size and concentration on the dose enhancement in radiation therapy. BioImpacts: BI, 29-35(29), 3.Google Scholar
  51. 51.
    Manohar, N., Jones, B. L., & Cho, S. H. (2014). Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study. Medical Physics, 41, 101906PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Jeynes, J. C. G., Merchant, M. J., Spindler, A., Wera, A. C., & Kirkby, K. J. (2014). Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies. Physics in Medicine and Biology, 59, 6431–6443.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kim, B. H., & Kwon, J. W. (2014). Plasmon-assisted radiolytic energy conversion in aqueous solutions. Scientific Reports-UK, 4, 5249.CrossRefGoogle Scholar
  54. 54.
    Li, W. B., Müllner, M., Greiter, M. B., Bissardon, C., Xie, W. Z., Schlattl, H., Oeh, U., Li, J. L., & Hoeschen, C. (2014). Monte Carlo simulations of dose enhancement around gold nanoparticles used as X-ray imaging contrast agents and radiosensitizers. In Medical imaging 2014: Physics of medical imaging; Proc. of SPIE (Vol. 9033, p. 90331K). California, United States: San Diego.Google Scholar
  55. 55.
    Zhang, D. G., Feygelman, V., Moros, E. G., Latifi, K., & Zhang, G. G. (2014). Monte Carlo study of radiation dose enhancement by gadolinium in megavoltage and high dose rate radiotherapy. PLoS One, 9, e109389.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lim, S. N., Pradhan, A. K., Barth, R. F., Nahar, S. N., Nakkula, R. J., Yang, W. L., Palmer, A. M., Turro, C., Weldon, M., Bell, E. H., et al. (2015). Tumoricidal activity of low-energy 160-KV versus 6-MV X-rays against platinum-sensitized F98 glioma cells. Journal of Radiation Research (Tokyo), 56, 77–89.CrossRefGoogle Scholar
  57. 57.
    Verkhovtsev, A. V., Korol, A. V., & Solov'yov, A. V. (2015). Revealing the mechanism of the low-energy electron yield enhancement from sensitizing nanoparticles. Physical Review Letters, 114, 063401.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Dou, Y., Guo, Y. Y., Li, X. D., Li, X., Wang, S., Wang, L., Lv, G. X., Zhang, X. N., Wang, H. J., Gong, X. Q., et al. (2016). Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced ct imaging and radiotherapy. ACS Nano, 10, 2536–2548.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Zhang, Y., Feng, Y. M., Ming, X., & Deng, J. (2016). Energy modulated photon radiotherapy: A Monte Carlo feasibility study. BioMed Research International, 2016, 1–16.Google Scholar
  60. 60.
    Koger, B., & Kirkby, C. (2016). Optimization of photon beam energies in gold nanoparticle enhanced arc radiation therapy using Monte Carlo methods. Physics in Medicine and Biology, 61, 8839–8853.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Koger, B., & Kirkby, C. (2016). A method for converting dose-to-medium to dose-to-tissue in Monte Carlo studies of gold nanoparticle-enhanced radiotherapy. Physics in Medicine and Biology, 61, 2014–2024.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Retif, P., Bastogne, T., & Barberi-Heyob, M. (2016). Robustness analysis of a Geant4-GATE simulator for nanoradiosensitizers characterization. IEEE Transactions on Nanobioscience, 15, 209–217.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Retif, P., Reinhard, A., Paquot, H., Jouan-Hureaux, V., Chateau, A., Sancey, L., Barberi-Heyob, M., Pinel, S., & Bastogne, T. (2016). Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles. International Journal of Nanomedicine, 11, 6169–6179.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ferrero, V., Visona, G., Dalmasso, F., Gobbato, A., Cerello, P., Strigari, L., Visentin, S., & Attili, A. (2017). Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 1: A radiobiological model study. Medical Physics, 44, 1983–1992.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Martinov, M. P., & Thomson, R. M. (2017). Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization. Medical Physics, 44, 644–653.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sung, W. M., Ye, S. J., McNamara, A. L., McMahon, S. J., Hainfeld, J., Shin, J., Smilowitz, H. M., Paganetti, H., & Schuemann, J. (2017). Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale, 9, 5843–5853.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Oliver, P. A. K., & Thomson, R. M. (2017). A Monte Carlo study of macroscopic and microscopic dose descriptors for kilovoltage cellular dosimetry. Physics in Medicine and Biology, 62, 1417–1437.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Rogers, D. W. O., Faddegon, B. A., Ding, G. X., Ma, C. M., We, J., & Mackie, T. R. (1995). Beam – A Monte-Carlo code to simulate radiotherapy treatment units. Medical Physics, 22, 503–524.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kawrakow, I. (2000). Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Medical Physics, 27, 485–498.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Allison, J., Amako, K., Apostolakis, J., Araujo, H., Dubois, P. A., Asai, M., Barrand, G., Capra, R., Chauvie, S., Chytracek, R., et al. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53, 270–278.CrossRefGoogle Scholar
  71. 71.
    Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A., Banerjee, S., Barrand, G., et al. (2016). Recent developments in GEANT4. Nuclear Instruments and Methods in Physics Research Section A, 835, 186–225.CrossRefGoogle Scholar
  72. 72.
    Scholz, M., & Kraft, G. (1996). Track structure and the calculation of biological effects of heavy charged-particles. Advances in Space Research-Series, 18, 5–14.CrossRefGoogle Scholar
  73. 73.
    Elsässer, T., & Scholz, M. (2007). Cluster effects within the local effect model. Radiation Research, 167, 319–329.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Armstrong, J., Brown, F. B., Bull, J. S., Casswell, L., Cox, L. J., Dixon, D., Forster, R. A., Goorley, J. T., Hughes, H. G., & Favorite, J. (2017). In C. J. Werner (Ed.), MNCP user's manual. Code version 6.2; LA-UR-17-29981. Los Alamos: Los Alamos National Security, LLC.Google Scholar
  75. 75.
    Semenenko, V. A., Turner, J. E., & Borak, T. B. (2003). NOREC, a Monte Carlo code for simulating electron tracks in liquid water. Radiation and Environmental Biophysics, 42, 213–217.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Paretzke, H. G., Turner, J. E., Hamm, R. N., Ritchie, R. H., & Wright, H. A. (1991). Spatial distributions of inelastic events produced by electrons in gaseous and liquid water. Radiation Research, 127, 121–129.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Friedland, W., Dingfelder, M., Kundrat, P., & Jacob, P. (2011). Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 711, 28–40.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Baro, J., Sempau, J., Fernandezvarea, J. M., & Salvat, F. (1995). Penelope – An algorithm for Monte-Carlo simulation of the penetration and energy-loss of electrons and positrons in matter. Nuclear Instruments and Methods in Physics Research Section B, 100, 31–46.CrossRefGoogle Scholar
  79. 79.
    Salvat, F., Fernandez-Varea, J. M., & Sempau, J. (2011). PENELOPE-2011: A code system for Monte Carlo simulation of electron and photon transport. Nuclear Energy Agency: Barcelona.Google Scholar
  80. 80.
    McNamara, A., Geng, C., Turner, R., Mendez, J. R., Perl, J., Held, K., Faddegon, B., Paganetti, H., & Schuemann, J. (2017). Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries. Physica Medica, 33, 207–215.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Bethe, H., & Ashkin, J. (1953). In E. Segre (Ed.), Experimental nuclear physics. New York: Wiley.Google Scholar
  82. 82.
    Ysua, N., Jiang, M., Mizuno, K., & Usesaka, M. (2009). Numerical evaluation of the effectiveness of colloidal gold as a contrast agent. Radiological Physics and Technology, 2(1), 33–39.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Sharmah, A., Mukherjee, S., Yao, Z., Lu, L., & Guo, T. (2016). Concentration-dependent association between weakly attractive nanoparticles in aqueous solutions. Journal of Physical Chemistry C, 120, 19830–19836.CrossRefGoogle Scholar
  84. 84.
    McMahon, S. J., Paganetti, H., & Prise, K. M. (2016). Optimising element choice for nanoparticle radiosensitisers. Nanoscale, 8, 581–589.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Pradhan, A. K., Nahar, S. N., Montenegro, M., Yu, Y., Zhang, H. L., Sur, C., Mrozik, M., & Pitzer, R. M. (2009). Resonant X-ray enhancement of the Auger effect in high-Z atoms, molecules, and nanoparticles: Potential biomedical applications. The Journal of Physical Chemistry. A, 113, 12356–12363.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Lim, S., Montenegro, M., Pradhan, A. K., Nahar, S. N., Chowdhury, E., & Yu, Y. (2013). Broadband and monochromatic X-ray irradiation of platinum: Monte Carlo simulations for dose enhancement factors and resonant theranostics. In M. Long (Ed.), World congress on medical physics and biomedical engineering (Vol. 39, pp. 2248–2251). Berlin Heidelberg: Springerlink. Springer-Verlag.Google Scholar
  87. 87.
    Alkhatib, A., Watanabe, Y., & Broadhurst, J. H. (2009). The local enhancement of radiation dose from photons of MeV energies obtained by introducing materials of high atomic number into the treatment region. Medical Physics, 36, 3543–3548.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Busby, C. (2005). Depleted uranium weapons, metal particles, and radiation dose. European Journal of Biology Bioelectromagnet, 1, 82–93.Google Scholar
  89. 89.
    Berbeco, R. I., Ngwa, W., & Makrigiorgos, G. M. (2011). Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted gold nanoparticles: New potential for external beam radiotherapy. International Journal of Radiation Oncology, Biology, Physics, 81, 270–276.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Leung, M. K. K., Chow, J. C. L., Chithrani, B. D., Lee, M. J. G., Oms, B., & Jaffray, D. A. (2011). Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Medical Physics, 38, 624–631.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ngwa, W., Makrigiorgos, G. M., & Berbeco, R. I. (2012). Gold nanoparticle enhancement of stereotactic radiosurgery for neovascular age-related macular degeneration. Physics in Medicine and Biology, 57, 6371–6380.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Zygmanski, P., Liu, B., Tsiamas, P., Cifter, F., Petersheim, M., Hesser, J., & Sajo, E. (2013). Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Physics in Medicine and Biology, 58, 7961–7977.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2012). Enhanced single strand breaks of supercoiled DNA in a matrix of gold nanotubes under X-ray irradiation. Journal of Colloid and Interface Science, 378, 70–76.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zhang, X. J., Xing, J. Z., Chen, J., Ko, L., Amanie, J., Gulavita, S., Pervez, N., Yee, D., Moore, R., & Roa, W. (2008). Enhanced radiation sensitivity in prostate cancer by gold-nanoparticles. Clinical and Investigative Medicine, 31, E160–E167.CrossRefPubMedGoogle Scholar
  95. 95.
    Zheng, Y., Hunting, D. J., Ayotte, P., & Sanche, L. (2008). Role of secondary low-energy electrons in the concomitant chemoradiation therapy of cancer. Physical Review Letters, 100, 198101.Google Scholar
  96. 96.
    Zheng, Y., Cloutier, P., Hunting, D. J., & Sanche, L. (2008). Radiosensitization by gold nanoparticles: Comparison of DNA damage induced by low and high-energy electrons. Journal of Biomedical Nanotechnology, 4, 469–473.CrossRefGoogle Scholar
  97. 97.
    Alizadeh, E., & Sanche, L. (2012). Precursors of solvated electrons in radiobiological physics and chemistry. Chemical Reviews, 112, 5578–5602.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Brun, E., Sanche, L., & Sicard-Roselli, C. (2009). Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids and Surfaces B: Biointerfaces, 72, 128–134.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Hebert, E. M., Debouttiere, P. J., Lepage, M., Sanche, L., & Hunting, D. J. (2010). Preferential tumour accumulation of gold nanoparticles, visualised by magnetic resonance imaging: Radiosensitisation studies in vivo and in vitro. International Journal of Radiation Biology, 86, 692–700.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Latimer, C. L. (2013). Octaarginine labelled 30 nm gold nanoparticles as agents for enhanced radiotherapy (Vol. Master of Science). Department of Medical Biophysics; University of Toronto, Toronto, p 81.Google Scholar
  101. 101.
    Zhang, P. P., Qiao, Y., Wang, C. M., Ma, L. Y., & Su, M. (2014). Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles. Nanoscale, 6, 10095–10099.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Detappe, A., Tsiamas, P., Ngwa, W., Zygmanski, P., Makrigiorgos, M., & Berbeco, R. (2013). The effect of flattening filter free delivery on endothelial dose enhancement with gold nanoparticles. Medical Physics, 40, 031706.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Davidson, R. A., & Guo, T. (2014). Average physical enhancement by nanomaterials under X-ray irradiation. Journal of Physical Chemistry C, 118, 30221–30228.CrossRefGoogle Scholar
  104. 104.
    Cho, S. H. (2005). Estimation of tumor dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study. Medical Physics, 32, 2162–2162.CrossRefGoogle Scholar
  105. 105.
    Cho, S., Jeong, J. H., Kim, C. H., & Yoon, M. (2010). Monte Carlo simulation study on dose enhancement by gold nanoparticles in brachytherapy. Journal of the Korean Physical Society, 56, 1754–1758.CrossRefGoogle Scholar
  106. 106.
    McMahon, S. J., Hyland, W. B., Brun, E., Butterworth, K. T., Coulter, J. A., Douki, T., Hirst, D. G., Jain, S., Kavanagh, A. P., Krpetic, Z., et al. (2011). Energy dependence of gold nanoparticle radiosensitization in plasmid DNA. Journal of Physical Chemistry C, 115, 20160–20167.CrossRefGoogle Scholar
  107. 107.
    Chang, J., Taylor, R. D., Davidson, R. A., Sharmah, A., & Guo, T. (2016). Electron paramagnetic resonance spectroscopy investigation of radical production by gold nanoparticles in aqueous solutions under X-ray irradiation. The Journal of Physical Chemistry. A, 120, 2815–2823.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Abolfazi, M. K., Mahdavi, S. R., Mahdavi, M., & Gh, A. (2015). Studying effects of gold nanoparticle on dose enhancement in megavoltage radiation. Journal of Biomedical Physics and Engineering, 5(4), 185–190.Google Scholar
  109. 109.
    Paudel, N., Shvydka, D., & Parsai, E. I. (2015). Comparative study of experimental enhancement in free radical generation against Monte Carlo modeled enhancement in radiation dose position due to the presence of high Z materials during irradiation of aqueous media. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 4, 300–307. 300.CrossRefGoogle Scholar
  110. 110.
    Kakade, N. R., & Sharma, S. D. (2015). Dose enhancement in gold nanoparticle-aided radiotherapy for the therapeutic photon beams using Monte Carlo technique. Journal of Cancer Research and Therapeutics, 11, 94–97.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Ma, N., Xu, H. P., An, L. P., Li, J., Sun, Z. W., & Zhang, X. (2011). Radiation-sensitive diselenide block co-polymer micellar aggregates: Toward the combination of radiotherapy and chemotherapy. Langmuir, 27, 5874–5878.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Cao, W., Zhang, X. L., Miao, X. M., Yang, Z. M., & Xu, H. P. (2013). Gamma-ray-responsive supramolecular hydrogel based on a diselenide-containing polymer and a peptide. Angewandte Chemie International Edition, 52, 6233–6237.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zhang, P. P., Qiao, Y., Xia, J. F., Guan, J. J., Ma, L. Y., & Su, M. (2015). Enhanced radiation therapy with multilayer microdisks containing radiosensitizing gold nanoparticles. ACS Applied Materials & Interfaces, 7, 4518–4524.CrossRefGoogle Scholar
  114. 114.
    Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., Nicolucci, P., & Baffa, O. (2012). Synthesis and characterization of gold/alanine nanocomposites with potential properties for medical application as radiation sensors. ACS Applied Materials & Interfaces, 4, 5844–5851.CrossRefGoogle Scholar
  115. 115.
    Guidelli, E. J., & Baffa, O. (2014). Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach. Medical Physics, 41(032101), 1–8.Google Scholar
  116. 116.
    Wolfe, T., Guidelli, E. J., Gomez, J. A., Baffa, O., & Nicolucci, P. (2015). Experimental assessment of gold nanoparticle-mediated dose enhancement in radiation therapy beams using electron spin resonance dosimetry. Physics in Medicine and Biology, 60, 4465–4480.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Smith, C. L., Ackerly, T., Best, S. P., Gagliardi, F., Kie, K., Little, P. J., McCorkell, G., Sale, C. A., Tsunei, Y., Tominaga, T., et al. (2015). Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV and MV) and electron beams, using alanine/EPR dosimeters. Radiation Measurements, 82, 122–128.CrossRefGoogle Scholar
  118. 118.
    Smith, C. L., Best, S. P., Gagliardi, F., Tominaga, T., & Geso, M. (2017). The effects of gold nanoparticles concentrations and beam quality/LET on dose enhancement when irradiated with X-rays and protons using alanine/EPR dosimetry. Radiation Measurements, 106, 352–356.CrossRefGoogle Scholar
  119. 119.
    Wang, J. G., Hou, Y. J., Lei, W. H., Zhou, Q. X., Li, C., Zhang, B. W., & Wang, X. S. (2012). DNA photocleavage by a cationic BODIPY dye through both singlet oxygen and hydroxyl radical: New insight into the photodynamic mechanism of BODIPYs. Chemphyschem, 13, 2739–2747.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Youkhana, E., Gagliardi, F., & Geso, M. (2016). Two-dimensional scanning of PRESAGE® dosimetry using UV/VIS spectrophotometry and its potential application in radiotherapy. Biomedical Physics and Engineering Express, 2, 045009.CrossRefGoogle Scholar
  121. 121.
    Marques, T., Schwarcke, M., Garrido, C., Zucolotto, V., Baffa, O., & Nicolucci, P. (2010). Gel dosimetry analysis of gold nanoparticle application in kilovoltage radiation therapy. Journal of Physics: Conference Series, 250, 012084.Google Scholar
  122. 122.
    McMahon, S. J., McNamara, A. L., Schuemann, J., Prise, K. M., & Paganetti, H. (2016). Mitochondria as target for radiosensitization by gold nanoparticles. Journal of Physics Conference Series, 777, 012008.CrossRefGoogle Scholar
  123. 123.
    Ngwa, W., Makrigiorgos, G. M., & Berbeco, R. I. (2012). Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus. Medical Physics, 39, 392–398.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Hossain, M., & Su, M. (2012). Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy. Journal of Physical Chemistry C, 116, 23047–23052.CrossRefGoogle Scholar
  125. 125.
    Douglass, M., Bezak, E., & Penfold, S. (2013). Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Medical Physics, 40(071710), 1–9.Google Scholar
  126. 126.
    Wardlow, N., Polin, C., Villagomez-Bernabe, B., & Currell, F. (2015). A simple model to quantify radiolytic production following electron emission from heavy-atom nanoparticles irradiated in liquid suspensions. Radiation Research, 184, 518–532.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Zabihzadeh, M., Moshirian, T., Ghorbani, M., Knaup, C., & Behrooz, M. A. (2018). A Monte Carlo study on dose enhancement by homogenous and inhomogeneous distributions of gold nanoparticles in radiotherapy with low energy X-rays. Journal of Biomedical Physics and Engineering, 8(1), I–XVI.Google Scholar
  128. 128.
    McQuaid, H. N., Muir, M. F., Taggart, L. E., McMahon, S. J., Coulter, J. A., Hyland, W. B., Jain, S., Butterworth, K. T., Schettino, G., Prise, K. M., et al. (2016). Imaging and radiation effects of gold nanoparticles in tumour cells. Scientific Reports-UK, 6, 19442.CrossRefGoogle Scholar
  129. 129.
    Oo, M. K. K., Yang, Y. M., Hu, Y., Gomez, M., Du, H., & Wang, H. J. (2012). Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano, 6, 1939–1947.CrossRefGoogle Scholar
  130. 130.
    Davidson, R. A., Sugiyama, C., & Guo, T. (2014). Determination of absolute quantum efficiency of X-ray nano phosphors by thin film photovoltaic cells. Analytical Chemistry, 86, 10492–10496.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Chen, W., & Zhang, J. (2006). Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology, 6, 1159–1166.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Gahl, C., Azima, A., Beye, M., Deppe, M., Dobrich, K., Hasslinger, U., Hennies, F., Melnikov, A., Nagasono, M., Pietzsch, A., et al. (2008). A femtosecond X-ray/optical cross-correlator. Nature Photonics, 2, 165–169.CrossRefGoogle Scholar
  133. 133.
    Liu, Y. F., Chen, W., Wang, S. P., & Joly, A. G. (2008). Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Applied Physics Letters, 92, 043901.CrossRefGoogle Scholar
  134. 134.
    Morgan, N. Y., Kramer-Marek, G., Smith, P. D., Camphausen, K., & Capala, J. (2009). Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: Calculation of required physical parameters. Radiation Research, 171, 236–244.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Withers, N. J., Rivera, A. C., Plumley, J. B., Smolyakov, G. A., Triño, N. D., Sankar, K., Timmins, G. S., Akins, B. A., & Osiński, M. (2009). Scintillating-nanoparticle-induced enhancement of absorbed radiation dose. In T. M. J. M. Osinski & K. Yamanoto (Eds.), Proceedings of SPIE(Vol. 7189, p. 718917). San Jose: SPIE.Google Scholar
  136. 136.
    Gao, X., Kang, Q. S., Yeow, J. T. W., & Barnett, R. (2010). Design and evaluation of quantum dot sensors for making superficial x-ray energy radiation measurements. Nanotechnology, 21, 285502.CrossRefPubMedGoogle Scholar
  137. 137.
    Scaffidi, J. P., Gregas, M. K., Lauly, B., Zhang, Y., & Vo-Dinh, T. (2011). Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation. ACS Nano, 5, 4679–4687.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Maggiorella, L., Barouch, G., Devaux, C., Pottier, A., Deutsch, E., Bourhis, J., Borghi, E., & Levy, L. (2012). Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncology, 8, 1167–1181.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Marill, J., Anesary, N. M., Zhang, P., Vivet, S., Borghi, E., Levy, L., & Pottier, A. (2014). Hafnium oxide nanoparticles: Toward an in vitro predictive biological effect? Radiation Oncology, 9, 150.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Elmenoufy, A. H., Tang, Y. A., Hu, J., Xu, H. B., & Yang, X. L. (2015). A novel deep photodynamic therapy modality combined with CT imaging established via X-ray stimulated silica-modified lanthanide scintillating nanoparticles. Chemical Communications, 51, 12247–12250.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kraščākovā, S., Giuliani, A., Lacerda, S., Pallier, A., Mercere, P., Toth, E., & Refregiers, M. (2015). X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations. Nano Research, 8, 2373–2379.CrossRefGoogle Scholar
  142. 142.
    Kirakci, K., Kubat, P., Fejfarova, K., Martincik, J., Nikl, M., & Lang, K. (2016). X-ray inducible luminescence and singlet oxygen sensitization by an octahedral molybdenum cluster compound: A new class of nanoscintillators. Inorganic Chemistry, 55, 803–809.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Ma, L., Zou, X. J., Bui, B., Chen, W., Song, K. H., & Solberg, T. (2014). X-ray excited ZnS:Cu,co afterglow nanoparticles for photodynamic activation. Applied Physics Letters, 105, 013702.CrossRefGoogle Scholar
  144. 144.
    Tseng, S.-J., Chien, C.-C., Liao, Z.-X., Chen, H.-H., Kang, Y.-D., Wang, C.-L., Hwu, Y., & Margaritondo, G. (2012). Controlled hydrogel photopolymerization inside live systems by X-ray irradiation. Soft Matter, 8(5), 1420–1427.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ting Guo
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations