Applications of X-Ray Nanochemistry in Sensing, Radiolysis, and Environmental Research

  • Ting Guo
Part of the Nanostructure Science and Technology book series (NST)


Three application areas of radiolysis, sensing and remediation research connected to X-ray nanochemistry are discussed in this chapter. Basic principles are briefly reviewed, followed by review of literature in these three areas. Radiolysis includes catalytic decomposition of molecules in solution. Several new sensing methods are presented. One particular remediation example is given.


Radiolysis Sensing Environmental remediation Radiolysis with X-rays Radiolysis assisted by nanomaterials Decomposition Decomposition of hydrogen peroxide Decomposition of large molecules Radiation protection 


  1. 1.
    LaVerne, J. A. (2005). H2 formation from the radiolysis of liquid water with zirconia. The Journal of Physical Chemistry. B, 109, 5395–5397.CrossRefPubMedGoogle Scholar
  2. 2.
    Sharmah, A., Yao, Z., Lu, L., & Guo, T. (2016). X-ray-induced energy transfer between nanomaterials under X-ray irradiation. Journal of Physical Chemistry C, 120, 3054–3060.CrossRefGoogle Scholar
  3. 3.
    Farhataziz, & Rodgers, M. A. J. (1987). Radiation chemistry: Principles and applications (p. 527). New York: VCH Publishers, Inc..Google Scholar
  4. 4.
    Harteck, P., & Dondes, S. (1955). Decomposition of carbon dioxide by ionizing radiation. 1. The Journal of Chemical Physics, 23, 902–908.CrossRefGoogle Scholar
  5. 5.
    Kummler, R., Leffert, C., Im, K., Piccirelli, R., Kevan, L., & Willis, C. (1977). Numerical-model of carbon-dioxide radiolysis. The Journal of Physical Chemistry, 81, 2451–2463.CrossRefGoogle Scholar
  6. 6.
    Wu, X. Z., Hatashita, M., Enokido, Y., & Kakihana, H. (2000). Reduction of carbon dioxide in gamma ray irradiated carbon dioxide: Water system containing Cu2+ and SO32. Chemistry Letters, 29, 572–573.CrossRefGoogle Scholar
  7. 7.
    Tseng, I. H., Chang, W. C., & Wu, J. C. S. (2002). Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37, 37–48.CrossRefGoogle Scholar
  8. 8.
    Liu, D., Fernandez, Y., Ola, O., Mackintosh, S., Maroto-Valer, M., Parlett, C. M. A., Lee, A. F., & Wu, J. C. S. (2012). On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catalysis Communications, 25, 78–82.CrossRefGoogle Scholar
  9. 9.
    Pilling, S., Duarte, E. S., Domaracka, A., Rothard, H., Boduch, P., & da Silveira, E. F. (2010). Radiolysis of H2O:CO2 ices by heavy energetic cosmic ray analogs. Astronomy and Astrophysics, 523, A77.CrossRefGoogle Scholar
  10. 10.
    Meisel, D. (2004). Radiation effects in nanoparticle suspensions. In L. M. Liz-Marzán & P. V. Kamat (Eds.), Nanoscale materials (pp. 119–134). New York: Kluwer Academic Publishers.CrossRefGoogle Scholar
  11. 11.
    Cecal, A., & Humelnicu, D. (2011). Hydrogen output from catalyzed radiolysis of water. In P. Tsvetkov (Ed.), Nuclear power – Development, operation and sustainability (pp. 489–510). Rijeka: InTech.Google Scholar
  12. 12.
    Johnson, E. R., & Allen, A. O. (1952). The molecular yield in the decomposition of water by hard X-rays. Journal of the American Chemical Society, 74, 4147–4150.CrossRefGoogle Scholar
  13. 13.
    Nakashima, M., & Masaki, N. M. (1996). Radiolytic hydrogen gas formation from water adsorbed on type Y zeolites. Radiation Physics and Chemistry, 47, 241–245.CrossRefGoogle Scholar
  14. 14.
    Le Caer, S. (2011). Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water, 3, 235–253.CrossRefGoogle Scholar
  15. 15.
    Yamamoto, T. A., Seino, S., Katsura, M., Okitsu, K., Oshima, R., & Nagata, Y. (1999). Hydrogen gas evolution from alumina nanoparticles dispersed in water irradiated with gamma-ray. Nanostructured Materials, 12, 1045–1048.CrossRefGoogle Scholar
  16. 16.
    Seino, S., Yamamoto, T. A., Fujimoto, R., Hashimoto, K., Katsura, M., Okuda, S., & Okitsu, K. (2001). Enhancement of hydrogen evolution yield from water dispersing nanoparticles irradiated with gamma-ray. Journal of Nuclear Science and Technology, 38, 633–636.CrossRefGoogle Scholar
  17. 17.
    Seino, S., Yamamoto, T. A., Fujimoto, R., Hashimoto, K., Katsura, M., Okuda, S., & Okitsu, K. (2001). Effect of pH on hydrogen evolution yield from water dispersing tirania nanoparticles enhanced by gamma ray. Materials Research Society Symposia Proceedings, 676, Y3.43.41–45.Y3.43.1.Google Scholar
  18. 18.
    LaVerne, J. A., & Tandon, L. (2002). H2 production in the radiolysis of water on CeO2 and ZrO2. The Journal of Physical Chemistry. B, 106, 380–386.CrossRefGoogle Scholar
  19. 19.
    Roth, O., Dahlgren, B., & LaVerne, J. A. (2012). Radiolysis of water on ZrO2 nanoparticles. Journal of Physical Chemistry C, 116, 17619–17624.CrossRefGoogle Scholar
  20. 20.
    LaVerne, J. A., & Tonnies, S. E. (2003). H2 production in the radiolysis of aqueous SiO2 suspensions and slurries. The Journal of Physical Chemistry. B, 107, 7277–7280.CrossRefGoogle Scholar
  21. 21.
    Rotureau, P., Renault, J. P., Lebeau, B., Patarin, J., & Mialocq, J. C. (2005). Radiolysis of confined water: Molecular hydrogen formation. ChemPhysChem, 6, 1316–1323.CrossRefPubMedGoogle Scholar
  22. 22.
    Musat, R., Moreau, S., Poidevin, F., Mathon, M. H., Pommeret, S., & Renault, J. P. (2010). Radiolysis of water in nanoporous gold. Physical Chemistry Chemical Physics, 12, 12868–12874.CrossRefPubMedGoogle Scholar
  23. 23.
    Maeda, Y., Kawana, Y., Kawamura, K., Hayami, S., Sugihara, S., & Okaib, T. (2005). Hydrogen gas evolution from water included in a silica gel cavity and on metal oxides with γ-ray irradiation. Journal of Nuclear and Radiochemical Sciences, 6, 131–134 131.CrossRefGoogle Scholar
  24. 24.
    Ouerdane, H., Gervais, B., Zhou, H., Beuve, M., & Renault, J. P. (2010). Radiolysis of water confined in porous silica: A simulation study of the physicochemical yields. Journal of Physical Chemistry C, 114, 12667–12674.CrossRefGoogle Scholar
  25. 25.
    Merga, G., Milosavljevic, B. H., & Meisel, D. (2006). Radiolytic hydrogen yields in aqueous suspensions of gold particles. The Journal of Physical Chemistry. B, 110, 5403–5408.CrossRefPubMedGoogle Scholar
  26. 26.
    Zidki, T., Cohen, H., Meyerstein, D., & Meisel, D. (2007). Effect of silica-supported silver nanoparticles on the dihydrogen yields from irradiated aqueous solutions. Journal of Physical Chemistry C, 111, 10461–10466.CrossRefGoogle Scholar
  27. 27.
    Jung, J., Jeong, H. S., Chung, H. H., Lee, M. J., Jin, J. H., & Park, K. B. (2003). Radiocatalytic H2 production with gamma-irradiation and TiO2 catalysts. Journal of Radioanalytical and Nuclear Chemistry, 258, 543–546.CrossRefGoogle Scholar
  28. 28.
    Brewer, K. J., & Elvington, M.. (2006). Supramolecular complexes as photocatylysts for the production of hydrogen from water. US 7122171 B2.Google Scholar
  29. 29.
    Yoshida, T., Tanabe, T., Sugie, N., & Chen, A. (2007). Utilization of gamma-ray irradiation for hydrogen production from water. Journal of Radioanalytical and Nuclear Chemistry, 272, 471–476.CrossRefGoogle Scholar
  30. 30.
    Kumagai, Y., Kimura, A., Taguchi, M., Nagaishi, R., Yamagishi, I., & Kimura, T. (2013). Hydrogen production in gamma radiolysis of the mixture of mordenite and seawater. Journal of Nuclear Science and Technology, 50, 130–138.CrossRefGoogle Scholar
  31. 31.
    Essehli, R., Crumiere, F., Blain, G., Vandenborre, J., Pottier, F., Grambow, B., Fattahi, M., & Mostafavi, M. (2011). H-2 production by gamma and He ions water radiolysis, effect of presence TiO2 nanoparticles. International Journal of Hydrogen Energy, 36, 14342–14348.CrossRefGoogle Scholar
  32. 32.
    Musat, R. M., Cook, A. R., Renault, J. P., & Crowell, R. A. (2012). Nanosecond pulse radiolysis of Nanoconfined water. Journal of Physical Chemistry C, 116, 13104–13110.CrossRefGoogle Scholar
  33. 33.
    Frances, L., Grivet, M., Renault, J. P., Groetz, J. E., & Ducret, D. (2015). Hydrogen radiolytic release from zeolite 4A/water systems under gamma irradiations. Radiation Physics and Chemistry, 110, 6–11.CrossRefGoogle Scholar
  34. 34.
    Frances, L., Douilly, M., Grivet, M., Ducret, D., & Theobald, M. (2015). Self-radiolysis of tritiated water stored in zeolites 4A: Production and behavior of H2 and O2. Journal of Physical Chemistry C, 119, 28462–28469.CrossRefGoogle Scholar
  35. 35.
    Fujita, N., Fukuda, Y., Matsuura, C., & Saigo, K. (1996). Radiation-enhanced H+ generation in iron-containing solution saturated with CO2. Radiation Physics and Chemistry, 48, 297–304.CrossRefGoogle Scholar
  36. 36.
    Yoshida, T., Tanabe, T., Okabe, Y., Sawasaki, T., & Chen, A. (2005). Decomposition of carbon dioxide by metals during gamma irradiation. Radiation Research, 164, 332–335.CrossRefPubMedGoogle Scholar
  37. 37.
    Hiroki, A., & LaVerne, J. A. (2005). Decomposition of hydrogen peroxide at water-ceramic oxide interfaces. The Journal of Physical Chemistry. B, 109, 3364–3370.CrossRefPubMedGoogle Scholar
  38. 38.
    Lien, J., Peck, K. A., Su, M. Q., & Guo, T. (2016). Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region. Journal of Colloid and Interface Science, 479, 173–181.CrossRefPubMedGoogle Scholar
  39. 39.
    Yoshida, T., Tanabe, T., Chen, A., Miyashita, Y., Yoshida, H., Hattori, T., & Sawasaki, T. (2003). Method for the degradation of dibutyl phthalate in water by gamma-ray irradiation. Journal of Radioanalytical and Nuclear Chemistry, 255, 265–269.CrossRefGoogle Scholar
  40. 40.
    Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.Google Scholar
  41. 41.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.CrossRefPubMedGoogle Scholar
  42. 42.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2012). Enhanced single strand breaks of supercoiled DNA in a matrix of gold nanotubes under X-ray irradiation. Journal of Colloid and Interface Science, 378, 70–76.CrossRefPubMedGoogle Scholar
  43. 43.
    McMahon, S. J., Hyland, W. B., Brun, E., Butterworth, K. T., Coulter, J. A., Douki, T., Hirst, D. G., Jain, S., Kavanagh, A. P., Krpetic, Z., et al. (2011). Energy dependence of gold nanoparticle radiosensitization in plasmid DNA. Journal of Physical Chemistry C, 115, 20160–20167.CrossRefGoogle Scholar
  44. 44.
    Miller, R. D., Hofer, D., Fickes, G. N., Willson, C. G., Marinero, E., Trefonas, P., & West, R. (1986). Soluble polysilanes – An interesting new class of radiation sensitive materials. Polymer Engineering and Science, 26, 1129–1134.CrossRefGoogle Scholar
  45. 45.
    Oldfield, G., Ung, T., & Mulvaney, P. (2000). Au@SnO2 core-shell nanocapacitors. Advanced Materials, 12, 1519–1522.CrossRefGoogle Scholar
  46. 46.
    Gao, X., Kang, Q. S., Yeow, J. T. W., & Barnett, R. (2010). Design and evaluation of quantum dot sensors for making superficial x-ray energy radiation measurements. Nanotechnology, 21, 285502.CrossRefPubMedGoogle Scholar
  47. 47.
    Lund, E., Gustafsson, H., Danilczuk, M., Sastry, M. D., Lund, A., Vestad, T. A., Malinen, E., Hole, E. O., & Sagstuen, E. (2005). Formates and dithionates: Sensitive EPR-dosimeter materials for radiation therapy. Applied Radiation and Isotopes, 62, 317–324.CrossRefPubMedGoogle Scholar
  48. 48.
    Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., Nicolucci, P., & Baffa, O. (2012). Synthesis and characterization of gold/alanine nanocomposites with potential properties for medical application as radiation sensors. ACS Applied Materials & Interfaces, 4, 5844–5851.CrossRefGoogle Scholar
  49. 49.
    Marques, T., Schwarcke, M., Garrido, C., Zucolotto, O. B., & Nicolucci, P. (2010). Gel dosimetry analysis of gold nanoparticle application in kilovoltage radiation therapy. Journal of Physics: Conference Series, 250, 012084.Google Scholar
  50. 50.
    Alqathami, M., Blencowe, A., Yeo, U. J., Doran, S. J., Qiao, G., & Geso, M. (2012). Novel multicompartment 3-dimensional radiochromic radiation dosimeters for nanoparticle-enhanced radiation therapy dosimetry. International Journal of Radiation Oncology, Biology, Physics, 84, E549–E555.CrossRefPubMedGoogle Scholar
  51. 51.
    Rakowski, J. T., Laha, S. S., Snyder, M. G., Buczek, M. G., Tucker, M. A., Liu, F. C., Mao, G. Z., Hillman, Y., & Lawes, G. (2015). Measurement of gold nanofilm dose enhancement using unlaminated radiochromic film. Medical Physics, 42, 5937–5944.CrossRefPubMedGoogle Scholar
  52. 52.
    Pushpavanam, K., Narayanan, E., Chang, J., Sapareto, S., & Rege, K. (2015). A colorimetric plasmonic nanosensor for dosimetry of therapeutic levels of ionizing radiation. ACS Nano, 9, 11540–11550.CrossRefPubMedGoogle Scholar
  53. 53.
    Pushpavanam, K., Inamdar, S., Chang, J., Bista, T., Sapareto, S., & Rege, K. (2017). Detection of therapeutic levels of ionizing radiation using plasmonic nanosensor gels. Advanced Functional Materials, 27.CrossRefGoogle Scholar
  54. 54.
    Nugroho, P., Mitomo, H., Yoshii, F., & Kume, T. (2001). Degradation of poly(L-lactic acid) by gamma-irradiation. Polymer Degradation and Stability, 72, 337–343.CrossRefGoogle Scholar
  55. 55.
    Hoertz, P. G., Magnus-Aryitey, D., Gupta, V., Norton, C., Doorn, S., & Ennis, T. (2013). Photocatalytic and radiocatalytic nanomaterials for the degradation of organic species. Radiation Physics and Chemistry, 84, 51–58.CrossRefGoogle Scholar
  56. 56.
    Nie, Z., Liu, K. J., Zhong, C. J., Wang, L. F., Yang, Y., Tian, Q., & Liu, Y. (2007). Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: A novel inspiration for development of new artificial antioxidants. Free Radical Biology & Medicine, 43, 1243–1254.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ting Guo
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations