Advertisement

X-Ray Nanochemistry: Background and Introduction

  • Ting Guo
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

X-ray nanochemistry is defined and the history behind the development of X-ray nanochemistry is discussed in this chapter. The chapter also contains speculations on why nature has not developed any systems to harvest X-ray energy. Three categories of enhancement through which nanomaterials can enhance the effectiveness of X-ray irradiation are briefly described. The differences between how X-rays and γ-rays interact with nanomaterials are analyzed. An overview of X-ray nanochemistry research literature is provided.

Keywords

Absolute enhancement DEU Dose enhancement units Enhancement of X-ray effects Ionizing radiation Nanochemistry Nanomaterials Nanoscale energy deposition Nanoscale physical enhancement Relative enhancement Type 1 biological enhancement Type 2 biological enhancement Type 1 chemical enhancement Type 2 chemical enhancement Type 1 physical enhancement Type 2 physical enhancement Type 3 physical enhancement X-ray nanochemistry X-ray nanotechnology X-ray synthesis 

References

  1. 1.
    Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., & Smalley, R. E. (1985). C60: Buckminsterfullerene. Nature, 318, 162–163.CrossRefGoogle Scholar
  2. 2.
    Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58.CrossRefGoogle Scholar
  3. 3.
    Bawendi, M. G., Steigerwald, M. L., & Brus, L. E. (1990). The quantum-mechanics of larger semiconductor clusters (quantum dots). Annual Review of Physical Chemistry, 41, 477–496.CrossRefGoogle Scholar
  4. 4.
    Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of Thiol-Derivatised gold nanoparticles in a 2-phase liquid-liquid system. J Chem Soc Chem Comm, 801–802.CrossRefGoogle Scholar
  5. 5.
    Hainfeld, J. F. (1987). A small gold-conjugated antibody label - improved resolution for electron microscopy. Science, 236, 450–453.CrossRefPubMedGoogle Scholar
  6. 6.
    Roco, M. C., & Tech, N. S. E. (2004). Nanoscale science and engineering: Unifying and transforming tools. AICHE Journal, 50, 890–897.CrossRefGoogle Scholar
  7. 7.
    Castillo, M. H., Button, T. M., Doerr, R., Homs, M. I., Pruett, C. W., & Pearce, J. I. (1988). Effects of radiotherapy on mandibular reconstruction plates. American Journal of Surgery, 156, 261–263.CrossRefPubMedGoogle Scholar
  8. 8.
    Cecchini, S., Girouard, S., Huels, M. A., Sanche, L., & Hunting, D. J. (2004). Single-strand-specific radiosensitization of DNA by bromodeoxyuridine. Radiation Research, 162, 604–615.CrossRefPubMedGoogle Scholar
  9. 9.
    Herold, D. M., Das, I. J., Stobbe, C. C., Iyer, R. V., & Chapman, J. D. (2000). Gold microspheres: A selective technique for producing biologically effective dose enhancement. International Journal of Radiation Biology, 76, 1357–1364.CrossRefPubMedGoogle Scholar
  10. 10.
    Foley, E., Carter, J., Shan, F., & Guo, T. (2005). Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 3192–3194.Google Scholar
  11. 11.
    Davidson, R. A., & Guo, T. (2012). An example of X-ray Nanochemistry: SERS investigation of polymerization enhanced by nanostructures under X-ray irradiation. Journal of Physical Chemistry Letters, 3, 3271–3275.CrossRefGoogle Scholar
  12. 12.
    Carter, J. D., Cheng, N. N., Qu, Y. Q., Suarez, G. D., & Guo, T. (2007). Nanoscale energy deposition by x-ray absorbing nanostructures. The Journal of Physical Chemistry. B, 111, 11622–11625.CrossRefPubMedGoogle Scholar
  13. 13.
    Cheng, N. N., Starkewolf, Z., Davidson, A. R., Sharmah, A., Lee, C., Lien, J., & Guo, T. (1950). Chemical enhancement by Nanomaterials under X-ray irradiation. J. Am. Chem. Soc. Commun., 2012(134), 1950–1953.Google Scholar
  14. 14.
    Hainfeld, J. F., Slatkin, D. N., & Smilowitz, H. M. (2004). The use of gold nanoparticles to enhance radiotherapy in mice. Physics in Medicine and Biology, 49, N309–N315.CrossRefPubMedGoogle Scholar
  15. 15.
    Henglein, A., & Meisel, D. (1998). Radiolytic control of the size of colloidal gold nanoparticles. Langmuir, 14, 7392–7396.CrossRefGoogle Scholar
  16. 16.
    Belloni, J., & Mostafavi, M. (2001). Radiation chemistry of nanocolloids and clusters. In C. D. Jonah & B. S. M. Rao (Eds.), Radiation chemistry: Present status and future trends (Vol. 87, 1st ed., pp. 411–452). Elsevier Science. Amsterdam, The Netherlands.CrossRefGoogle Scholar
  17. 17.
    Divan, R., Ma, Q., Mancini, D. C., & Keane, D. T. (2008). Controlled X-ray induced gold nanoparticles deposition. Rom J Inf Sci Tech, 11, 71–84.Google Scholar
  18. 18.
    Wang, C. H., Hua, T. E., Chien, C. C., Yu, Y. L., Yang, T. Y., Liu, C. J., Leng, W. H., Hwu, Y., Yang, Y. C., Kim, C. C., et al. (2007). Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction. Materials Chemistry and Physics, 106, 323–329.CrossRefGoogle Scholar
  19. 19.
    Abedini, A., Daud, A. R., Hamid, M. A. A., Othman, N. K., & Saion, E. (2013). A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Research Letters, 8, 474.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sung, W., Jung, S., & Ye, S. J. (2016). Evaluation of the microscopic dose enhancement for nanoparticle-enhanced auger therapy. Physics in Medicine and Biology, 61, 7522–7535.CrossRefPubMedGoogle Scholar
  21. 21.
    Her, S., Jaffray, D. A., & Allen, C. (2017). Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced Drug Delivery Reviews, 109, 84–101.CrossRefPubMedGoogle Scholar
  22. 22.
    Jelveh, S., & Chithrani, D. B. (2011). Gold nanostructures as a platform for combinational therapy in future cancer therapeutics. Cancer, 3, 1081–1110.CrossRefGoogle Scholar
  23. 23.
    Dreaden, E. C., Alkilany, A. M., Huang, X. H., Murphy, C. J., & El-Sayed, M. A. (2012). The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews, 41, 2740–2779.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ting Guo
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations