Staining Techniques and Microscopy

  • Reinhard B. Dettmeyer


The analysis of tissues and cells first obtained at forensic autopsy can present particular technical problems. While all established conventional histological staining methods are used, the immunohistochemical visualization of defined antigens has also made progress in forensic histopathology. Tissue that has frequently already undergone autolytic changes or putrefaction can make both conventional and immunohistochemical staining challenging, if not impossible. It is precisely for this reason that the mastery of staining techniques is essential. In the field of immunohistochemistry, the choice of fixative and the duration of fixation play a role, as does the option to pretreat tissues for antigen demasking, which often involves varying incubation times with primary and secondary antibodies. Other histopathological methods are occasionally used, such as in situ hybridization or apoptotic cell detection using the TUNEL technique. The actual practice of microscopy evaluation requires knowledge of possible distortions and artifacts but also depends on selecting the correct stain or the primary antibodies that are appropriate for the immunohistochemical question at hand. Experience in microscopy can significantly reduce problems such as interobserver variability. It is also important not to underestimate the importance of converting microscopic findings into a written expert appraisal. The qualification and microscopic quantification of defined cell types raises additional issues that, in many cases, can only be answered when one also has good knowledge of the relevant literature and its critical review. Highly specialized microscopy investigations, such as confocal laser scanning microscopy and electron microscopy, are used more rarely. However, histopathological findings must always be classified within the overall context of a “case,” taking other findings and information into consideration.


  1. Ananian V, Tozzo P, Ponzano E, Nitti D, Rodriguez D, Caenazzo L (2010) Tumoural specimens for forensic purposes: comparison of genetic alterations in frozen and formalin-fixed paraffin-embedded tissues. Int J Legal Med 125(3):327–332CrossRefPubMedGoogle Scholar
  2. Bankfalvi A, Navabi H, Bier B, Böcker W, Jasani B, Schmid W (1994a) Wet autoclave pretreatment for antigen retrieval in diagnostic immunohistochemistry. J Pathol 174:223–228CrossRefPubMedGoogle Scholar
  3. Bankfalvi A, Riehemann K, Öfner D, Checci R, Morgan JM, Piffko J, Böcker W, Jasani B, Schmid KW (1994b) Feuchtes Autoklavieren. Pathologe 15:345–349CrossRefPubMedGoogle Scholar
  4. Ben-Ezra J, Johnson DA, Rossi J (1991) Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction. J Histochem Cytochem 39:351–354CrossRefPubMedGoogle Scholar
  5. Biro C, Kovac P, Palkovic M, El-Hassoun O, Caplovicova M, Novotny J, Jakubovsky J (2010) Potentialities of scanning electron microscopy and EDX analysis in bullet wounds. Rom J Leg Med 18:225–230CrossRefGoogle Scholar
  6. Bratzke H, Schröter A (1995) Immunhistochemie in der Rechtsmedizin. Hänsel-Hohenhausen, EgelsbachGoogle Scholar
  7. Brinkmann B, Fechner G, Püschel K (1984) Identification of mechanical asphyxiation in cases of attempted masking of the homicide. Forensic Sci Int 26:235–245CrossRefPubMedGoogle Scholar
  8. Brown RW, Chirala R (1995) Utility of microwave-citrate antigen retrieval in diagnostic immunohistochemistry. Mod Pathol 8:515–520PubMedGoogle Scholar
  9. Cardinetti B, Ciampini C, D’Onofrio C, Orlando G, Gravina L, Ferrari F, Di Tullio D, Torresi L (2004) X-ray mapping technique: a preliminary study in discriminating gunshot residue particles from aggregates of environmental occupational origin. Forensic Sci Int 143:1–19CrossRefPubMedGoogle Scholar
  10. Chiquet-Ehrisman R, Chiquet M (2003) Tenascins: regulation and putative functions during pathological stress. J Pathol 200:488–499CrossRefGoogle Scholar
  11. Cordell JL, Falini B, Erber WN, Ghosh AK, Abdulaziz Z, McDonald S, Pulford AF, Stein H, Mason DY (1984) Immunoenzymatic labeling of monoclonal antibodies using immuno complexes of alkaline phosphatase and monoclonal anti-alkaline phosphatase (APAAP-complex). J Histochem Cytochem 32:219–229CrossRefPubMedGoogle Scholar
  12. Cuevas EC, Bateman AC, Wilkins BS, Johnson PA, Williams JH, Lee AHS, Jones DB, Wright DH (1994) Microwave antigen retrieval in immunocytochemistry: a study of 80 antibodies. J Clin Pathol 47:448–452CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dettmeyer R (2016) Postmortem diagnostics of a (post-)viral myocarditis in putative sudden infant death syndrome. Case report for avoidance of errors in the diagnostics. Rechtsmedizin 26:514–519CrossRefGoogle Scholar
  14. Dettmeyer R, Baasner A, Schlamann M, Padosch SA, Haag C, Kandolf R, Madea B (2004a) Role of virus-induced myocardial affections in sudden infant death syndrome (SIDS): a prospective post-mortem study. Pediatr Res 55:947–952CrossRefPubMedGoogle Scholar
  15. Dettmeyer R, Baasner A, Schlamann M, Padosch SA, Haag C, Kandolf R, Madea B (2004b) Role of virus-induced myocardial affections in sudden infant death syndrome: a prospective postmortem study. Pediatr Res 55:1–5CrossRefGoogle Scholar
  16. Dettmeyer R, Stiel M, Madea B (2006) Heat shock protein 60 (cHSP60) as a marker for chronic infection with Chlamydia pneumoniae in atherosclerosis—investigation of atherosclerotic coronary arteries by immunocytochemistry. Forensic Sci Med Pathol 2:173–178PubMedGoogle Scholar
  17. Dettmeyer R, Sperhake JP, Müller J, Madea B (2007) Cytomegalovirus-induced pneumonia and myocarditis in 3 cases of suspected sudden infant death syndrome (SIDS): diagnosis by immunohistochemical techniques, in-situ-hybridisation and molecular pathologic investigations. Forensic Sci Int 174:229–233CrossRefPubMedGoogle Scholar
  18. Dettmeyer R, Baasner A, Haag C, Bruch S, Schlamann M (2009a) Immunohistochemical and molecular pathological diagnosis of myocarditis in cases of suspected sudden infant death syndrome (SIDS)—a multicenter study. Legal Med 11:S124–S127CrossRefPubMedGoogle Scholar
  19. Dettmeyer R, Bruch S, Haag C (2009b) Letter to the editor on “myocardial inflammation, cellular death, and viral detection in sudden infant death caused by SIDS, suffocation, or myocarditis”. Pediatr Res 66:714CrossRefPubMedGoogle Scholar
  20. Dettmeyer R, Friedrich K, Schmidt P, Madea B (2009c) Heroin-associated myocardial damages—conventional and immunohistochemical investigations. Forensic Sci Int 187:42–46CrossRefPubMedGoogle Scholar
  21. Dokhan DB, Kovatich AJ, Miettinen M (1993) Nonenzymatic antigen retrieval in immunohistochemistry—comparison between different antigen retrieval modalities and proteolytic digestion. Appl Immunohistochem 1:149–155Google Scholar
  22. Dreßler J, Bachmann L, Koch R, Müller E (1998) The detection of P-selectin in paraffin embedded sections by wet autoclave technique. J Cell Pathol 3:139–143Google Scholar
  23. Dubrovin IA, Dubrovina IA (2003) The influence of a shot distance on a profile of a wound canal in flat bones. Sud Med Ekspert 46:11–13PubMedGoogle Scholar
  24. Edston E, Gröntoft L, Johnsson J (2002) TUNEL: a useful screening method in sudden cardiac death. Int J Legal Med 116:22–26CrossRefPubMedGoogle Scholar
  25. Erel O, Gun B, Tataroğlu C, Dirlik M (2014) Evaluation of apoptosis in myocardial injury in cases of medicolegal death. Rom J Leg Med 22:267–274CrossRefGoogle Scholar
  26. Fechner G, Petkovits T, Brinkmann B (1990) Ultrastructural pathology of mechanical skeletal muscle damage. Z Rechtsmed 103:291–299CrossRefPubMedGoogle Scholar
  27. Feiden W (1995) Einführung in die Immunhistochemie. In: Bratzke H, Schröter A (eds) Immunhistochemie in der Rechtsmedizin. Hänsel-Hohenhausen, Egelsbach, pp 7–13Google Scholar
  28. Fracasso T, Heinrich M, Hohoff C, Brinkmann B, Pfeiffer H (2009) Ultrasound-accelerated formalin fixation improves the preservation of nucleic acids extraction in histological sections. Int J Legal Med 123:521–525CrossRefPubMedGoogle Scholar
  29. Frick R (1981) Stenosierende Koronarsklerose und Färbung des Myokards nach Lie et al. 1971 (Fuchsinorrhagie). Pathologe 2:246–254Google Scholar
  30. Gaaloul I, Riabi S, Evans M, Hunter T, Huber S, Aouni M (2016) Postmortem diagnosis of infectious heart diseases: a mystifying cause of sudden infant death. Forensic Sci Int 262:166–172CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gavrieli Y et al (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501CrossRefPubMedGoogle Scholar
  32. Gown AM, de Wever N, Battifora H (1993) Microwave-based antigenic unmasking—a revolutionary new technique for routine immunohistochemistry. Appl Immunohistochem 1:256–266Google Scholar
  33. Grasl-Kaup B et al (1995) In situ detection of fragmented DNA (TUNEL-assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21:1465–1468CrossRefGoogle Scholar
  34. Hasday JD, Sing IS (2000) Fever and the heat shock response: distinct, partially overlapping processes. Cell Stress Chaperones 5:471–480CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hausmann R, Bock H, Biermann T, Betz P (2004) Influence of lung fixation technique on the state of alveolar expansion—a histomorphometrical study. Legal Med 6:61–65CrossRefPubMedGoogle Scholar
  36. Havel J (2003) Energy-dispersive X-ray fluorescence spectrometry—a forensic chemistry method for determination of shooting distance. Soud Lek 48:57–60PubMedGoogle Scholar
  37. Havel J, Zelenka K (2003) Energy dispersive x-ray fluorescence spectrometry—a forensic chemistry method for detection of bullet metal residue in gunshot wounds. Soud Lek 48:22–27PubMedGoogle Scholar
  38. Holgate CS, Jackson P, Pollard K, Lunny D, Bird CC (1986) Effect of fixation on T and B lymphocyte surface membrane antigen demonstration in paraffin processed tissue. J Pathol 149:293–300CrossRefPubMedGoogle Scholar
  39. Hsu SM, Raine L, Fanger H (1981a) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hsu SM, Raine L, Fanger H (1981b) A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin-complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am J Clin Pathol 75:734–739CrossRefPubMedGoogle Scholar
  41. Imam SA (1995) Comparison of two microwave based antigen-retrieval solutions in unmasking epitopes in formalin-fixed tissue for immunostaining. Anticancer Res 15:1153–1158PubMedGoogle Scholar
  42. Javid B et al (2007) Structure and function: heat shock proteins and adaptive immunity. J Immunol 179:2035–2040CrossRefPubMedGoogle Scholar
  43. Kage S, Kudo K, Kaizoji A, Ryumoto J, Ikeda H, Ikeda N (2001) A simple method for detection of gunshot residue particles from hands, hair, face, and clothing using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX). J Forensic Sci 46:830–834CrossRefPubMedGoogle Scholar
  44. Kardasewitsch B (1952) Eine Methode zur Beseitigung der Formalinsedimente (Paraform) aus mikroskopischen Praeparaten. Z Wiss Mikrosk 42:322–324Google Scholar
  45. Kinoshita H, Nishiguchi M, Ouchi H, Minami T, Kubota A, Utsumi T, Sakamoto N, Kashiwagi N, Shinomiya K, Tsuboi H, Hishida S (2004) The application of a variable-pressure scanning electron microscope with energy dispersive X-ray microanalyser to the diagnosis of electrocution: a case report. Legal Med 6:55–60CrossRefPubMedGoogle Scholar
  46. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibodies of predefined specificity. Nature 256:495–497CrossRefPubMedGoogle Scholar
  47. Kok LP, Boon ME (1992) Microwave cookbook for microscopists. Art and science of visualization, 3rd edn. Coulomb Press, LeidenGoogle Scholar
  48. Krous HF, Ferandos C, Masoumi H, Arnold J, Haas EA, Stanley C, Crossfeld PD (2009) Myocardial inflammation, cellular death, and viral detection in sudden infant death, caused by SIDS, suffocation or myocarditis. Pediatr Res 66:17–21CrossRefPubMedGoogle Scholar
  49. Kuhn H, Krugmann J (1995) Einfluß von Formalinfixierung und Fixationsdauer auf die DNA-Amplifizierung von verschiedenen Paraffin-eingebetteten Geweben. Verh Dtsch Ges Pathol 79:600Google Scholar
  50. Kwok S, Higuchi R (1989) Avoiding false positives with PCR. Nature 339:237–238CrossRefPubMedPubMedCentralGoogle Scholar
  51. Labat-Moleur F et al (1998) TUNEL apoptotic cell detection in tissue sections: critical evaluation and improvement. J Histochem Cytochem 46:327–334CrossRefPubMedGoogle Scholar
  52. Leong ASY (1996) Microwaves in diagnostic immunohistochemistry. Eur J Morphol 34:381–383CrossRefPubMedGoogle Scholar
  53. Leong ASY, Milios J (1993) An assessment of the efficacy of the microwave antigen-retrieval procedure on a range of tissue antigens. Appl Immunohistochem 1:267–274Google Scholar
  54. Lie JT, Holley KE, Kampa WR, Titus LL (1971) New histochemical method for morphologic diagnosis of early stages of myocardial ischemia. Mayo Clin Proc 46:319–327PubMedGoogle Scholar
  55. Login GR, Schnitt SJ, Dvorak AM (1987) Methods in laboratory investigation—rapid microwave fixation of human tissues for light microscopic immunoperoxidase identification of diagnostically useful antigens. Lab Investig 57:585–591PubMedGoogle Scholar
  56. Lozinski GM, Davis GG, Krous HF, Billmann GF, Shimizu H, Burns JC (1994) Adenovirus myocarditis: retrospective diagnosis by gene amplification from formalin-fixed, paraffin-embedded tissues. Hum Pathol 25:831–834CrossRefPubMedGoogle Scholar
  57. Lucitti JL, Dickinson ME (2006) Moving toward the light: using new technology to answer old questions. Pediatr Res 60:1–5CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mason JT, O’Leary TJ (1991) Effects of formaldehyde fixation on protein secondary structure: a calorimetric and infrared spectroscopic investigation. J Histochem Cytochem 39:225–229CrossRefPubMedGoogle Scholar
  59. Merz H, Malisius R, Mannweiler S, Zhou R, Hartmann W, Orscheschek K, Moubayed P, Feller AC (1995a) ImmunoMax—a maximized immunohistochemical method for the retrieval and enhancement of hidden antigens. Lab Investig 73:149–156PubMedGoogle Scholar
  60. Merz H, Malisius R, Mannweiler S, Zhou R, Hartmann W, Orscheschek K, Moubayed P, Feller AC (1995b) Methods in laboratory investigation ImmunoMax. Lab Investig 73:149–156PubMedGoogle Scholar
  61. Meyer R, Niedobitek F, Wenzelides K (1996) Erfahrungen mit der Formalinersatzlösung NoTox. Pathologe 17:130–132CrossRefPubMedGoogle Scholar
  62. Miething F, Hering S, Hanschke B, Dressler J (2006) Effect of fixation to the degradation of nuclear and mitochondrial DNA in different tissues. J Histochem Cytochem 54:371–374CrossRefPubMedGoogle Scholar
  63. Moloney WC, McPherson K, Fliegelman L (1960) Esterase activity in leucocytes demonstrated by the napthol-ASD-chloracetate substrate. J Histochem Cytochem 8:200CrossRefPubMedGoogle Scholar
  64. Nakatone M, Matoba R, Ogura Y, Tun Z, Iwasa M, Maeno Y, Koyama H, Nakamura Y, Inoue H (2002) Detection of cardiomyocyte apoptosis in forensic autopsy cases. Int J Legal Med 116:17–21CrossRefGoogle Scholar
  65. Nikolaou P, Papoutsis I, Dona A, Spiliopoulou C, Athanaselis S (2013) Toxicological analysis of formalin-fixed or embalmed tissues: a review. Forensic Sci Int 233:312–319CrossRefPubMedGoogle Scholar
  66. Noll S, Schaub-Kuhnen S (2000) In: Höfler H, Müller KM (eds) Praxis der Immunhistochemie. Urban and Fischer, MünchenGoogle Scholar
  67. Nwariaku FE, Mileski WJ, Lightfoot E, Sikes PJ, Lipsky PE (1995) Alterations in leukocyte adhesion molecule expression after burn injury. J Trauma 39:285–288CrossRefPubMedGoogle Scholar
  68. Ortmann C, Brinkmann B (1997) The expression of P-selectin in inflammatory and non-inflammatory lung tissue. Int J Legal Med 110:15–158CrossRefGoogle Scholar
  69. Paulin D, Li Z (2004) Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle. Exp Cell Res 301:1–7CrossRefPubMedGoogle Scholar
  70. Pelstring RJ, Allred DC, Esther RJ, Lampkin SR, Banks PM (1991) Differential antigen preservation during tissue autolysis. Hum Pathol 22:237–241CrossRefPubMedGoogle Scholar
  71. Pileri SA, Roncador G, Ceccarelli C, Piccioli M, Briskomatis A, Sabattini E, Ascani S, Santini D, Piccaluga PP, Leone O, Damiani S, Ercolessi C, Sandri F, Pieri F, Leoncini L, Falini B (1997) Antigen retrieval techniques in immunohistochemistry: comparison of different methods. J Pathol 183:116–123CrossRefPubMedGoogle Scholar
  72. Sabattini E, Bisgard K, Ascani S, Poggi S, Piccioli M, Ceccarelli C, Pieri F, Fraternali-Orcioni G, Pileri SA (1998) The ENVision system: a new immunohistochemical method for diagnosis and research: critical comparison with the APAAP, ChemMate, CSA, LABC and SABC techniques. J Clin Pathol 51:506–511CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schiller PI, Puchta U, Ogilvie AJL, Graf A, Kind P, Sander CA (1998) In-situ-PCR und PCR-in-situ-Hybridisierung am Paraffingewebe. Pathologe 19:313–317CrossRefPubMedGoogle Scholar
  74. Seidl S, Burmeister R, Hausmann R, Betz P, Lederer T (2005) Contact-free isolation of sperm and epithelial cells by laser microdissection and pressure catapulting. Forensic Sci Med Pathol 1:153–157CrossRefPubMedGoogle Scholar
  75. Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39:741–748CrossRefPubMedGoogle Scholar
  76. Shi SR, Chaiwun B, Young L, Imam A, Cote RJ, Taylor CR (1994) Antigen retrieval using pH 3.5 glycine-HCI buffer or urea solution for immunohistochemical localization of Ki-67. Biotech Histochem 69:213–215CrossRefPubMedGoogle Scholar
  77. Shi SR, Imam A, Young L, Cote RJ, Taylor CR (1995) Antigen retrieval immunohistochemistry under the influence of pH using monoclonal antibodies. J Histochem Cytochem 43:193–201CrossRefPubMedGoogle Scholar
  78. Shi SR, Cote RJ, Taylor CR (1997) Antigen retrieval immunohistochemistry: past, present, and future. J Histochem Cytochem 45:327–343CrossRefPubMedGoogle Scholar
  79. Taylor CR, Shi SR, Cote RJ (1996) Antigen retrieval for immunohistochemistry. Status and need for greater standardization. Appl Immunohistochem 4:144–166Google Scholar
  80. Torre C, Mattutino G, Vasino V, Robino C (2002) Brake linings: a source of non-GSR particles containing lead, barium, and antimony. J Forensic Sci 47:494–504PubMedGoogle Scholar
  81. Trani N, Bonetti LR, Gualandri G, Barbolini G (2008) Immediate anaphylactic death following antibiotics injection: splenic eosinophilia easily revealed by pagoda red stain. Forensic Sci Int 181:21–25CrossRefPubMedGoogle Scholar
  82. Turillazzi E, Karch SB, Neri M, Pomara C, Riezzo I, Fineschi V (2007) Confocal laser scanning microscopy. Using new technology to answer old questions in forensic investigations. Int J Legal Med 122:173–177CrossRefPubMedGoogle Scholar
  83. Uno AT, Morita S, Furukawa S, Nishi K, Hitosugi M (2016) Determination of both fetus’and mother’s blood type from an autopsy case immersed in formalin for over 50 years. J Forensic Sci 61:1131–1134CrossRefPubMedGoogle Scholar
  84. Vandewoestyne M, van Hoofstat D, van Nieuwerburgh F, Deforce D (2009) Automatic detection of spermatozoa for laser capture microdissection. Int J Legal Med 123:169–175CrossRefPubMedGoogle Scholar
  85. von Wasielewski R, Werner M, Nolte M, Wilkens L, Georgii A (1994) Effects of antigen retrieval by microwave heating in formalin-fixed tissue sections on a broad panel of antibodies. Histochemistry 102:165–172CrossRefGoogle Scholar
  86. Werner M, Wasieleweski VR, Komminoth P (1996) Antigen retrieval, signal amplification and intensification in immunohistochemistry. Histochem Cell Biol 105:253–260CrossRefPubMedGoogle Scholar
  87. Wiegand P, Domhöver J, Brinkmann B (1996) DNA-degradation in formalin-fixiertem Gewebe. Pathologe 17:451–454CrossRefPubMedGoogle Scholar
  88. Williamson SLH, Steward M, Milton I, Parr A, Piggott NH, Krajewski AS, Angus B, Horne CW (1998) Technical advance—new monoclonal antibodies to the T cell antigens CD4 and CD8—production and characterization in formalin-fixed paraffin-embedded tissue. Am J Pathol 152:1421–1426PubMedPubMedCentralGoogle Scholar
  89. Wyss A, Lasczkowski G (2008) Vitality and age of conjunctival petechiae: the expression of P-selectin. Forensic Sci Int 178:30–33CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Reinhard B. Dettmeyer
    • 1
  1. 1.University Hospital Giessen Institute of Forensic MedicineGiessenGermany

Personalised recommendations