Advertisement

Vitality, Injury Age, Determination of Skin Wound Age, and Fracture Age

  • Reinhard B. Dettmeyer
Chapter

Abstract

Using histopathological techniques, it is possible to demonstrate that a tissue finding was caused antemortem. This issue has been investigated particularly intensively in the detection of vital skin wounds and in the histopathological determination of skin wound age. According to enzyme histochemical investigations, which are poorly established in routine testing, immunohistochemical markers have been used in recent years, meaning that a spectrum of primary antibodies permit more precise statements in immunohistochemical wound age determination in some cases. However, critical voices highlight methodological problems such as the number of samples per skin wound, the undetermined effects caused by air and circulatory status, as well as environmental conditions (airflow, temperature, etc.). However, tabular statements are now available not only for histopathological wound age determination but also for the determination of fracture age. In the case of inflammatory processes, such as fibrinous pericarditis, pleuritis, or peritonitis, the question of the age of inflammation may also require histopathological investigation in individual cases.

References

  1. Abe Y, Sugisaki K, Dannenberg AM Jr (1996) Rabbit vascular endothelial adhesion molecules: ELAM 1 is most elevated in acute inflammation, whereas VCAM-1 and ICAM-1 predominate in chronic inflammation. J Leukoc Biol 60:692–703PubMedCrossRefGoogle Scholar
  2. Amberg R (1996) Time-dependent cytokine expression in cutaneous wound repair. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 107–121Google Scholar
  3. Amon U, Gibbs BF, Wolff HH (1996) Mast cells: mediators and aspects of wound healing. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 173–202Google Scholar
  4. Bacci S, Romagnoli P, Norelli GA, Forestieri AL, Bonelli A (2006) Early increase in TNF-alpha-containing mast cells in skin lesions. Int J Legal Med 120:138–142PubMedCrossRefGoogle Scholar
  5. Bai R, Wan L, Shi M (2008) The time-dependent expressions of IL-1β, COX-2, MCP-1 mRNA in skin wounds of rabbits. Forensic Sci Int 175:193–197PubMedCrossRefGoogle Scholar
  6. Beneke G (1972) Altersbestimmung von Verletzungen innerer Organe. Z Rechtsmed 71:1–16PubMedCrossRefGoogle Scholar
  7. Berg S (1972) The timing of skin wounds. Z Rechtsmed 70:121–135PubMedCrossRefGoogle Scholar
  8. Berg S (1975) Vitale Reaktionen und Zeitschätzungen. In: Mueller B (ed) Gerichtliche Medizin, vol 1. Springer, Berlin, pp 327–340Google Scholar
  9. Berg S, Bonte W (1971) Praktische Erfahrungen mit der biochemischen Wundaltersbestimmung. Beitr Gerichtl Med 28:108–114Google Scholar
  10. Berg S, Elbel R (1969) Altersbestimmung subcutaner Blutungen. Münch Med Wochen 111:1185–1190Google Scholar
  11. Berg S, Ditt J, Friedrich D, Bonte W (1968) Möglichkeiten der biochemischen Wundaltersbestimmung. Dtsch Z Gerichtl Med 63:183–198Google Scholar
  12. Betz P (1994) Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Legal Med 107:60–68PubMedCrossRefGoogle Scholar
  13. Betz P (1995a) Forensische Altersbestimmung menschlicher Hautwunden. In: Bratzke H, Schröter A (eds) Immunhistochemie in der Rechtsmedizin. Hänsel-Hohenhausen, Egelsbach, pp 37–100Google Scholar
  14. Betz P (1995b) Immunohistochemical parameters for the age estimation of human skin wounds. Am J Forensic Med Pathol 16:203–209PubMedCrossRefGoogle Scholar
  15. Betz P (1996a) Collagen subtypes – markers for the healing of skin wounds. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 247–256Google Scholar
  16. Betz P (1996b) Neue Methoden zur histologischen Altersbestimmung menschlicher Hautwunden. Schmidt-Römhild, LübeckGoogle Scholar
  17. Betz P, Eisenmenger W (1996) Morphometrical analysis of hemosiderin deposits in relation to wound age. Int J Legal Med 108:262–264PubMedCrossRefGoogle Scholar
  18. Betz P, Nerlich A, Wilske J, Tubel J, Wiest I, Penning R et al (1992a) The time-dependent rearrangement of the epithelial basement membrane in human skin wounds – immunohistochemical localization of collagen IV and VII. Int J Legal Med 105:93–97PubMedCrossRefGoogle Scholar
  19. Betz P, Nerlich A, Wilske J, Tubel J, Wiest I, Penning R et al (1992b) Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds. Int J Legal Med 195:21–26CrossRefGoogle Scholar
  20. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1992c) Time-dependent appearance of myofibroblasts in granulation tissue of human skin wounds. Int J Legal Med 105:99–103PubMedCrossRefGoogle Scholar
  21. Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, Eisenmenger W (1992d) Time-dependent pericellular expression of collagen type IV, laminin, and heparin sulfate proteoglycan in myofibroblasts. Int J Legal Med 105:169–172PubMedCrossRefGoogle Scholar
  22. Betz P, Nerlich A, Tübel J, Penning R, Eisenmenger W (1993a) Localization of tenascin in human skin wounds – an immunohistochemical study. Int J Legal Med 105:325–328PubMedCrossRefGoogle Scholar
  23. Betz P, Nerlich A, Tübel J, Penning R, Eisenmenger W (1993b) The time-dependent expression of keratins 5 and 13 during the reepithelialization of human skin wounds. Int J Legal Med 105:229–232PubMedCrossRefGoogle Scholar
  24. Betz P, Nerlich A, Wilke J, Tubel J, Penning R, Eisenmenger W (1993c) Analysis of the immunohistochemical localization of collagen type III and V for the time-estimation of human skin wounds. Int J Legal Med 105:329–332PubMedCrossRefGoogle Scholar
  25. Betz P, Nerlich A, Wilske J, Tubel J, Penning R, Eisenmenger W (1993d) Immunohistochemical localization of collagen types I and VI in human skin wounds. Int J Legal Med 106:31–34PubMedCrossRefGoogle Scholar
  26. Betz P, Nerlich A, Wilske J, Tubel J, Penning R, Eisenmenger W (1993e) The immunohistochemical analysis of fibronectin, collagen type III, laminin, and cytokeratin 5 in putrified skin. Forensic Sci Int 61:35–42PubMedCrossRefGoogle Scholar
  27. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993f) The immunohistochemical localization of alpha1-antichymotrypsin and fibronectin and its meaning for the determination of the vitality of human skin wounds. Int J Legal Med 105:223–227PubMedCrossRefGoogle Scholar
  28. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993g) The time-dependent localization of Ki-67 antigen positive cells in human skin wounds. Int J Legal Med 106:35–40PubMedCrossRefGoogle Scholar
  29. Betz P, Tübel J, Eisenmenger W (1995) Immunohistochemical analysis of markers for different macrophage phenotypes and their use for a forensic wound age estimation. Int J Legal Med 107:197–200PubMedCrossRefGoogle Scholar
  30. Blitstein-Willinger E (1991) The role of growth factors in wound healing. Skin Pharmacol 4:175–182PubMedCrossRefGoogle Scholar
  31. Bode G, Garbe G, Stöckigt W, Förster B (1979) Der Einfluss von Schlafmitteln auf die Entwicklung der morphologischen und biochemischen Wundreaktion. Z Rechtsmed 82:337–347PubMedCrossRefGoogle Scholar
  32. Bode G, Garbe G, Ick D (1980) Der Einffluss von Kälte bzw. Tod durch Erfrieren auf die frühen Wundheilungsvorgänge an Hautschnitten. Beitr Gerichtl Med 38:119–124PubMedGoogle Scholar
  33. Byard RW, Wick R, Gilbert JD, Donald T (2008) Histologic dating of bruises in moribund infants and young children. Forensic Sci Med Pathol 4:187–192PubMedCrossRefGoogle Scholar
  34. Capatina CO, Ceaușu M, Hostiuc S (2013) Usefulness of fibronectin and P-selectin as markers for vital reaction in uncontrolled conditions. Rom J Leg Med 21:281–286CrossRefGoogle Scholar
  35. Castagnoli C, Stella M, Magliacani G, Ferrone S, Momigliano Richiardi P (1994) Similar ectopic expression of ICAM-1 and HLA-class II molecules in hypertrophic scars following thermal injury. Burns 20:430–433PubMedCrossRefGoogle Scholar
  36. Cecchi R (2010) Estimating wound age: looking into the future. Int J Legal Med 124:523–536PubMedCrossRefGoogle Scholar
  37. Dachum W, Jiazhen Z (1992) Localization and quantification of the non-specific esterase in injured skin for timing of wounds. Forensic Sci Int 53:203–213CrossRefGoogle Scholar
  38. Dreßler J, Bachmann L, Kasper M, Hauck JG, Müller E (1997a) Time dependence of the expression of ICAM-1 (CD 54) in human skin wounds. Int J Legal Med 110:299–304PubMedCrossRefGoogle Scholar
  39. Dreßler J, Bachmann L, Müller E (1997b) Enhanced expression of ICAM-1 (CD54) in human skin wounds: diagnostic value in legal medicine. Inflamm Res 46:434–435PubMedCrossRefGoogle Scholar
  40. Dreßler J, Bachmann L, Koch R, Müller E (1999a) Enhanced expression of selectins in human skin wounds. Int J Legal Med 112:39–44Google Scholar
  41. Dreßler J, Bachmann L, Koch R, Müller E (1999b) Estimation of wound age and VCAM-1 in human skin. Int J Legal Med 112:159–162PubMedCrossRefGoogle Scholar
  42. Dreßler J, Busuttil A, Koch R, Harrison DJ (2001) Sequence of melanocyte migration into human scar tissue. Int J Legal Med 115:61–63PubMedCrossRefGoogle Scholar
  43. Dürwald W (1987) Gerichtliche Medizin, 3rd edn. J.A. Barth, Leipzig, p 87Google Scholar
  44. Eisenmenger W, Nerlich A, Glück D (1988) Die Bedeutung des Kollagens bei der Wundaltersbestimmung. Z Rechtsmed 100:79–100PubMedGoogle Scholar
  45. Fechner G (1995) Immunhistochemische Untersuchungen bei Muskeltraumen. In: Bratzke H, Schröter A (eds) Immunhistochemie in der Rechtsmedizin. Hänsel-Hohenhausen, Egelbach, pp 22–36Google Scholar
  46. Fechner G, Petkovits T, Brinkmann B (1990) Zur Ultrastruktur-Pathologie mechanischer Skelettmuskelschädigungen. Z Rechtsmed 103:291–299PubMedCrossRefGoogle Scholar
  47. Fechner G, Hauser R, Sepulchre MA, Brinkmann B (1991) Immunohistochemical investigations to demonstrate vital direct traumatic damage of skeletal muscle. Int J Legal Med 104:215–219PubMedCrossRefGoogle Scholar
  48. Fieguth A, Kleemann WJ, Tröger HD (1994) Immunohistochemical examination of skin wounds with antibodies against alpha-1 chymotrypsin, alpha-2-macroglobulin and lysozyme. Int J Legal Med 107:29–33PubMedCrossRefGoogle Scholar
  49. Fieguth A, Feldbrügge H, Gerich T, Kleemann WJ, Tröger HD (2003) The time-dependent expression of fibronectin, MRP8, MRP14 and defensin in surgically treated human skin wounds. Forensic Sci Int 131:156–161PubMedCrossRefGoogle Scholar
  50. Flad HD (1996) Chemokines and proinflammatory cytokines in wound healing. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 49–57Google Scholar
  51. Friebel L, Woohsmann H (1968) Die Altersbestimmung von Kanüleneinstichen mittels enzymhistochemischer Methoden. Dtsch Z Gerichtl Med 62:252–260Google Scholar
  52. Fries JWU, Williams AJ, Atkins RC, Newman W, Lipscomb MF, Collins T (1993) Expression of VCAM-1 and E-selectin in an in vivo model of endothelial activation. Am J Pathol 143:725–737PubMedPubMedCentralGoogle Scholar
  53. Fronczek J, Lulf R, Korkmaz HI, Witte BI, de Goot a, Begieneman PV, Schalkwijk CG, Krijnen PAJ, Rozendaal L, Niessen HWM, Reijnders UJL (2015a) Analysis of inflammatory cells and mediators in skin wound age in living subjects in forensic medicine. Forensic Sci Int 247:7–13PubMedCrossRefGoogle Scholar
  54. Fronczek J, Lulf R, Korkmaz HI, Witte BI, van de Goot FRW, Begieneman PV, Krijnen PAJ, Rozendaal L, Niessen HWM, Reijnders UJL (2015b) Analysis of morphological characteristics and expression levels of extracellular matrix proteins in skin wounds to determine wound age in living subjects in forensic medicine. Forensic Sci Int 246:86–91PubMedCrossRefGoogle Scholar
  55. Grellner W (2002) Time-dependent immunohistochemical detection of proinflammatory cytokines (IL-1β, IL-6, TNF-α) in human skin wounds. Forensic Sci Int 130:90–96PubMedCrossRefGoogle Scholar
  56. Grellner W, Ester-Bode T, Köhler L, Staak M (1997) Zur Rolle von Adhäsionsmolekülen für die frühe Wundaltersschätzung. In: 6. Frühjahrstagung – Region Nord – der Deutschen Gesellschaft für Rechtsmedizin. Berlin, 23. und 24. Mai 1997Google Scholar
  57. Grellner W, Dimmeler S, Madea B (1998) Immunohistochemical detection of fibronectin in post-mortem incised wounds of porcine skin. Forensic Sci Int 97:109–116PubMedCrossRefGoogle Scholar
  58. Grellner W, Georg T, Wilske J (2000) Quantitative analysis of proinflammatory cytokines (IL-1β, Il.6, TNF-α) in human skin wounds. Forensic Sci Int 113:251–264PubMedCrossRefGoogle Scholar
  59. Grellner W, Vieler S, Madea B (2005) Transforming growth factors (TGF-α and TGF-β1) in the determination of vitality and wound age: immunohistochemical study on human skin wounds. Forensic Sci Int 153:174–180PubMedCrossRefGoogle Scholar
  60. Hausmann R, Nerlich A, Betz P (1998) The time-related expression of p53 protein in human skin wounds – a quantitative immunohistochemical analysis. Int J Legal Med 111:169–172PubMedCrossRefGoogle Scholar
  61. Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2004) Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118:320–325PubMedCrossRefGoogle Scholar
  62. Helpap B (1987) Leitfaden der allgemeinen Entzündungslehre. Springer, BerlinCrossRefGoogle Scholar
  63. Helpap B, Cremer H (1972) Zellkinetische Untersuchungen zur Wundheilung der Mäuseleber. Virchows Arch B Cell Pathol 10:134–144PubMedGoogle Scholar
  64. Henssge C, Wang H, Hoppe B (2002) Light microscopical investigations on structural changes of skeletal muscle as artifacts after postmortem stimulation. Forensic Sci Int 125:163–171PubMedCrossRefGoogle Scholar
  65. Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2009) Detection of fibrocytes in human skin wounds and its application for wound age determination. Int J Legal Med 123:299–304PubMedCrossRefGoogle Scholar
  66. Ishida Y, Kimura A, Nosaka M, Kuminaka Y, Shimada E, Yamamoto H, Nishiyama K, Inaka S, Takayasu T, Eisenmenger W, Kondo T (2015a) Detection of endothelial progenitor cells in human skin wounds and its application for wound age determination. Int J Legal Med 129:1049–1054PubMedCrossRefGoogle Scholar
  67. Ishida Y, Kuninaka Y, Nosaka M, Kimura A, Kawaguchi T, Hama M, Sakamoto S, Shinozaki K, Eisenmenger W, Kondo T (2015b) Immunohistochemical analysis on MMP-2 and MMP-9 for wound age determination. Int J Legal Med 129:1043–1048PubMedCrossRefGoogle Scholar
  68. Ishida Y, Kuminaka Y, Furukawa F, Kimura A, Nosaka M, Fukami M, Yamamoto H, Kato T, Shimada E, Hata S, Takayasu T, Eisenmenger W, Kondo T (2017) Immunohistochemical analysis on aquaporin-1 and aquaporin-3 in skin wounds from aspects of wound age determination. Int J Legal Med 132:237–242. published online 28 October 2017PubMedCrossRefGoogle Scholar
  69. Janssen W (1977) Forensische Histologie. Schmidt-Römhild, LübeckGoogle Scholar
  70. Joseph-Silverstein J, Rifkin DB (1990) Endothelial cell growth factors and the vessel wall. In: Oehmichen M (ed) Die Wundheilung. Springer, BerlinGoogle Scholar
  71. Kara S, Akbaba M, Kul S, Bakir K (2016) Is it possible to make early wound age estimation by immunohistochemical methods? Rom J Leg Med 24:92–99Google Scholar
  72. Kekow J, Gross WL (1996) Role of TGFβ in wound healing. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 59–68Google Scholar
  73. Kepron C, Pollanen MS (2015) Rickets or abuse? A histologic comparison of rickets and child abuse-related fractures. Forensic Sci Med Pathol 11:78–87PubMedCrossRefGoogle Scholar
  74. Kimura A, Ishida Y, Nosaka M, Shiraki M, Hama M, Kawaguchi T, Kuminaka Y, Shimada E, Yamamoto H, Takayasu T, Kondo T (2015) Autophagy in skin wounds: a novel marker for vital reactions. Int J Legal Med 129:537–541PubMedCrossRefGoogle Scholar
  75. Klotzbach H, Delling G, Richter E, Sperhake J, Püschel K (2003) Post-mortem diagnosis and age estimation of infant’s fractures. Int J Legal Med 117:82–89PubMedGoogle Scholar
  76. Kondo T (2007) Timing of skin wounds. Legal Med 9:109–114PubMedCrossRefGoogle Scholar
  77. Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203:93–98PubMedCrossRefGoogle Scholar
  78. Kondo T, Ohshima T (1996a) Experimental study on the estimation of skin wound age after injury by immunostaining interleukin 1a, collagen type I and fibronectin. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 123–132Google Scholar
  79. Kondo T, Ohshima T (1996b) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med 108:231–236PubMedCrossRefGoogle Scholar
  80. Kondo T, Tanaka J, Ishida Y, Mori R, Tykayasu T, Ohshima T (2002) Ubiquitin expression in skin wounds and its application to forensic wound age determination. Int J Legal Med 116:267–272PubMedCrossRefGoogle Scholar
  81. Leibovich SJ, Wiseman DM (1988) Macrophages, wound repair and angiogenesis. In: Growth factors and other aspects of wound healing: biological and clinical implications. Alan R Liss, New York, pp 131–145Google Scholar
  82. Lindner J (1962) Die Morphologie der Wundheilung. Langenbecks Arch Chir 301:39–70CrossRefGoogle Scholar
  83. Lindner J (1967) Vitale Reaktionen. Dtsch Z Gerichtl Med 59:312–344Google Scholar
  84. Lindner J (1980) Morphologie und Biochemie der Wundheilung. Langenbecks Arch Chir 358:153–160CrossRefGoogle Scholar
  85. Lindner J, Huber P (1973) Biochemische und morphologische Grundlagen der Wundheilung und ihre Beeinflussung. Med Welt 24:897–911PubMedGoogle Scholar
  86. Lorente JA (1996) Cathepsin D as a marker of the vitality of the wounds. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 69–81Google Scholar
  87. Ma WX, Yu TS, Fan YY, Zhang ST, Ren P, Wang SB, Zhao R, Pi JB, Guan DW (2011) Time-dependent expression and distribution of monoacylglycerol lipase during the skin-incised wound healing in mice. Int J Legal Med 125:549–558PubMedCrossRefGoogle Scholar
  88. MacGregor RR, Safford M, Salit M (1988) Effect of ethanol on function required for delivery of neutrophils to sites of inflammation. J Infect Dis 157:682–689PubMedCrossRefGoogle Scholar
  89. Mackie EJ, Halfter W, Liverani D (1988) Induction of tenascin in healing wounds. J Cell Biol 107:2757–2767PubMedCrossRefGoogle Scholar
  90. Mann M, Bednar B (1977) Influence of age and different drugs on the healing process in human skin wounds. Gerontology 23:277–289PubMedCrossRefGoogle Scholar
  91. Martin P (1997) Wound healing – aiming for perfect skin regeneration. Science 276:75–81PubMedCrossRefGoogle Scholar
  92. Mauch C, Oono T, Eckes B, Krieg T (1994) Cytokines and wound healing. In: Luger TA, Schwarz T (eds) Epidermal growth factors and cytokines. M. Dekker, New York, pp 325–344Google Scholar
  93. Maxeiner H (1987) Zur lokalen Vitalreaktion nach Angriff gegen den Hals. Z Rechtsmed 99:35–54PubMedCrossRefGoogle Scholar
  94. Maxeiner H (1994) Zur lokalen Vitalreaktion bei Unterkühlung. Rechtsmed 4:80–84Google Scholar
  95. McKay IA, Leigh IM (1991) Epidermal cytokines and their role in cutaneous wound healing. Br J Dermatol 124:513–518PubMedCrossRefGoogle Scholar
  96. Müller PK, Brinckmann J (1996) Collagen and wound healing – a summary. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 243–246Google Scholar
  97. Mulligan MS, Till GO, Smith CW, Anderson DC, Miyasaka M, Tamatani T, Todd RF, Issekutz TB, Ward PA (1994) Role of leucocyte adhesion molecules in lung and dermal vascular injury after thermal trauma of skin. Am J Pathol 144:1008–1015PubMedPubMedCentralGoogle Scholar
  98. Murakami R, Yamaoka I, Sakakura T (1989) Appearance of tenascin in healing skin of the mouse: possible involvement in seaming of wounded tissue. Int J Dev Biol 33:439–444PubMedGoogle Scholar
  99. Naeve W, Bause HW (1974) Experimentelle postmortale Kopf- und Hirnverletzungen. Z Rechtsmed 74:187PubMedCrossRefGoogle Scholar
  100. Nakajima T, Hayakawa M, Yajima D, Motani-Saitoh H, Sato Y, Kiuchi M, Ichinose M, Iwase H (2006) Time-course changes in the expression of heme oxygenase-1 in human subcutaneous hemorrhage. Forensic Sci Int 158:157–163PubMedCrossRefGoogle Scholar
  101. Nerlich ML, Bosch U (1988) Wunde und Wundbehandlung. Tetanusprophylaxe. Orthopade 17:11–16PubMedGoogle Scholar
  102. Ninggou L, Yijiu C, Xiaohua H (2006) Fibronectin EIIIA splicing variant: a useful contribution to forensic wounding interval estimation. Forensic Sci Int 162:178–182CrossRefGoogle Scholar
  103. Oehmichen M (1984) Blutabbau in den Lungenalveolen: Zeichen der Vitalität und Bestimmung der Überlebenszeit. Z Rechtsmed 92:47–57PubMedCrossRefGoogle Scholar
  104. Oehmichen M (1990a) Die Wundheilung. Springer, HeidelbergCrossRefGoogle Scholar
  105. Oehmichen M (1990b) Theorie und Praxis der Chronomorphologie von Verletzungen in der forensischen Pathologie. Springer, BerlinGoogle Scholar
  106. Oehmichen M, Cröpelin A (1995) Temporal course of intravital and post-mortem proliferation of epidermis cells after injury – an immunohistochemical study using bromodeoxyuridine in rats. Int J Legal Med 107:257–262PubMedCrossRefGoogle Scholar
  107. Oehmichen M, Kirchner H (eds) (1996) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, LübeckGoogle Scholar
  108. Oehmichen M, Raff G (1980) Timing of cortical contusion. Correlation between histomorphologic alterations and post-traumatic interval. Z Rechtsmed 84:79–94PubMedCrossRefGoogle Scholar
  109. Oehmichen M, Karres-Balting U, Saternus KS (1987) Reaktive Veränderungen bei Weichteilunterblutungen im Kehlkopfinneren. Beir Gerichtl Med 45:73–78Google Scholar
  110. Oehmichen M, Frasunek J, Zilles K (1988a) Cytokinetics of epidermal cells in skin from human cadavers: I. Dependency on sex, age and site. Z Rechtsmed 101:161–171PubMedCrossRefGoogle Scholar
  111. Oehmichen M, Frasunek J, Zilles K (1988b) Cytokinetics of epidermal cells in skin from human cadavers: II. Dependency on sex, age and site. Z Rechtsmed 101:173–182PubMedCrossRefGoogle Scholar
  112. Oehmichen M, Schmidt V, Stuka K (1989) Freisetzung von Proteinase-Inhibitoren als vitale Reaktion im frühen posttraumatischen Intervall. Z Rechtsmed 102:461–472PubMedGoogle Scholar
  113. Oehmichen M, Gronki T, Meissner C, Anlauf M, Schwark T (2009) Mast cell reactivity at the margin of human skin wounds: an early cell marker of wound survival? Forensic Sci Int 191:1–5PubMedCrossRefGoogle Scholar
  114. Ogbuihi S, Müller Z, Zink P (1988) Quantitative polarizing microscopy for the evaluation of collagen types I and III in paraffin-embedded sections. Z Rechtsmed 100:101–111PubMedGoogle Scholar
  115. Ordmann LJ, Gillmann T (1966) Studies in the healing of cutaneous wounds. I. The healing of incisions through the skin of pigs. Arch Surg 93:857–882CrossRefGoogle Scholar
  116. Ortonne JP, Löning T, Schmitt D, Thivolet J (1981) Immunomorphological and ultrastructural aspects of keratinocyte migration in epidermal wound healing. Virchows Arch A Pathol Anat Histol 392:217–230PubMedCrossRefGoogle Scholar
  117. Pechníková M, Mazzarelli D, Poppa P, Gibelli D, Baggi ES, Cattaneo C (2015) Microscopic pattern of bone fractures as an indicator of blast trauma: a pilot study. J Forensic Sci 60:1140–1145PubMedCrossRefGoogle Scholar
  118. Pierce GF, Yanagihara D, Kopchin K et al (1994) Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor. J Exp Med 179:831–840PubMedCrossRefGoogle Scholar
  119. Pinsker JE, Kain C, Keller L, Rooks VJ (2016) Vitamin D deficiency versus non-accidental trauma: comment on “Rickets or abuse? A histologic comparison of rickets and child abuse-related fractures?”. Forensic Sci Med Pathol 12:119–120PubMedCrossRefGoogle Scholar
  120. Pioch W (1969) Epidermale Esterase-Aktivität als Beweis der vitalen Einwirkung von stumpfer Gewalt. Beitr Gerichtl Med 25:136–145PubMedGoogle Scholar
  121. Püschel K, Schulz-Schaeffer WJ, Brück M (1996) Time-dependent morphological alterations of injection marks. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 293–307Google Scholar
  122. Radzun HJ (1996) Pathology of wound healing and repair. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 35–39Google Scholar
  123. Raekallio J (1960) Enzymes histochemically demonstrable in the earliest phase of wound healing. Nature 188:234–235PubMedCrossRefGoogle Scholar
  124. Raekallio J (1964) Histochemical distinction between antemortem and postmortem skin wounds. J Forensic Sci 9:107–118PubMedGoogle Scholar
  125. Raekallio J (1965a) Die Altersbestimmung mechanisch bedingter Hautwunden mit enzymhistochemischen Methoden. Schmidt-Römhild, LübeckGoogle Scholar
  126. Raekallio J (1965b) Histochemical demonstration of enzymatic response to injure in experimental skin wounds. Exp Mol Pathol 4:303–310PubMedCrossRefGoogle Scholar
  127. Raekallio J (1970) Enzyme histochemistry of wound healing. Fischer, StuttgartGoogle Scholar
  128. Raekallio J (1972) Determination of the age of wounds by histochemical and biochemical methods. Forensic Sci 1:3–16PubMedCrossRefGoogle Scholar
  129. Raekallio J (1973) Estimation of the age of injuries by histochemical and biochemical methods. Z Rechtsmed 73:83–102PubMedCrossRefGoogle Scholar
  130. Raekallio J (1976) Timing of wounds in forensic medicine. Jpn. J Legal Med 30:125–136Google Scholar
  131. Raekallio J (1980a) Histological estimation of the age of injuries. In: Perper JA, Wecht CH (eds) Microscopic diagnosis in forensic pathology. Springfield, Thomas, pp 3–16Google Scholar
  132. Raekallio J (1980b) Histological and biochemical estimation of the age of injuries. In: Perper JA, Wecht CH (eds) Microscopic diagnosis in forensic pathology. Springfield, Thomas, pp 17–35Google Scholar
  133. Raekallio J, Mäkinen PL (1967) Biochemical and histochemical observations on aminopeptidase activity in early wound healing. Nature 213:1037–1038CrossRefGoogle Scholar
  134. Raekallio J, Mäkinen PL (1974) The effect of ageing on enzyme histochemical vital reactions. Z Rechtsmed 75:105–111PubMedCrossRefGoogle Scholar
  135. Rolvien T, Butscheidt S, Herrmann J, Pueschel K (2016) Methodological approach for the histological comparison between rickets and child abuse. Rechtsmedizin 26:313–315CrossRefGoogle Scholar
  136. Ross R (1968) The fibroblast and wound repair. Biol Rev 43:51–96PubMedCrossRefGoogle Scholar
  137. Schaeffer-Schulz WJ, Brück W, Püschel K (1996) Macrophage subtyping in the determination of age of injection sites. Int J Legal Med 109:29–33CrossRefGoogle Scholar
  138. Schollmeyer W (1965) Über die Altersbestimmung von Injektionsstichen. Beitr Gerichtl Med 23:244–249PubMedGoogle Scholar
  139. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746PubMedCrossRefGoogle Scholar
  140. Suárez-Penarada JM, Rodríguez-Calvo MS, Ortiz-Rey JA, Munoz JI, Sánchez-Pintos P, da Silva EA, de la Fuente-Buceta A, Concheiro-Carro L (2002) Demonstration of apoptosis in human skin injuries as an indicator of vital reaction. Int J Legal Med 116:109–112CrossRefGoogle Scholar
  141. Sun JH, Wang YY, Zhang L, Gao CR, Zhang LZ, Guo Z (2010) Time-dependent expression of skeletal muscle troponin I mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation. Int J Legal Med 124:27–33PubMedCrossRefGoogle Scholar
  142. ten Dijke P, Iwata KK (1989) Growth factors for wound healing. Biotechnology 7:793–798Google Scholar
  143. Thomsen H (1996) Platelets and wound healing – a review. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 151–172Google Scholar
  144. Tian ZL, Jiang SK, Zhang M, Wang M, Li JY, Zhao R, Wang LL, Li SS, Liu M, Zhang MZ, Guan DW (2016) Detection of satellite cells during skeletal muscle wound healing in rats: time-dependent expressions of Pax7 and MyoD in relation to wound age. Int J Legal Med 130:163–172PubMedCrossRefGoogle Scholar
  145. Tutsch-Bauer E, Baur C, Tröger HD, Liebhardt E (1981) Untersuchungen zur Altersbestimmung an künstlich gesetzten Hämatomen. Beitr Gerichtl Med 39:83–86PubMedGoogle Scholar
  146. van de Goot FRW, Korkmaz HI, Fronczek J, Witte BI, Visser R, Ulrich MMW, Begieneman MPV, Rozendaal L, Krijnen PAJ, Niessen HWM (2014) A new method to determine wound age in early vital skin injuries: a probability scoring system using expression levels of fibronectin, CD62p and factor VIII in wound hemorrhage. Forensic Sci Int 244:128–135PubMedCrossRefGoogle Scholar
  147. Vieira DN (1996) Application of ions, proteinase, inhibitors and PGF2a in the differential diagnosis between vital and post-mortem skin wounds. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 83–105Google Scholar
  148. Walcher K (1936) Die vitale Reaktion bei der Beurteilung des gewaltsamen Todes. Dtsch Z Ges Gerichtl Med 26:193–211Google Scholar
  149. Weber MA, Risdon RA, Offiah AC, Malone M, Sebire NJ (2009) Rib fractures identified at post-mortem examination in sudden unexpected death in infancy (SUDI). Forensic Sci Int 189:75–81PubMedCrossRefGoogle Scholar
  150. Willems IEMG, Arends JW, Daemen MJAT (1996) Tenascin and fibronectin expression in healing human myocardial scars. J Pathol 179:321–325PubMedCrossRefGoogle Scholar
  151. Wyler D (1996) Determining the age and assessing the vitality of wounds by immunohistochemical detection of cell adhesion molecules. In: Oehmichen M, Kirchner H (eds) The wound healing process – forensic pathological aspects, Research in legal medicine, vol 13. Schmidt-Römhild, Lübeck, pp 133–138Google Scholar
  152. Yagi Y, Murase T, Kagawa S, Tsuruya S, Nakahara A, Yamamoto T, Umehara T, Ikematsu K (2016) Immunohistochemical detection of CD14 and combined assessment with CD32B and CD68 for wound age estimation. Forensic Sci Int 262:113–120PubMedCrossRefGoogle Scholar
  153. Yu TS, Cheng ZH, Li LQ, Zhao R, Fan YY, Du Y, Ma WX, Guan DW (2010) The cannabinoid receptor type 2 is time-dependently expressed during skeletal muscle wound healing in rats. Int J Legal Med 124:397–404PubMedCrossRefGoogle Scholar
  154. Zarbock A, Ley K (2008) Mechanism and consequences of neutrophil interaction with the endothelium. Am J Pathol 172:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  155. Zhao R, Guan DA, Zhang W, Du Y, Xiong CY, Zhu BL, Zhang JJ (2009) Increased expressions and activation of apoptosis-related factors in cell signaling during incised skin wound healing in mice: a preliminary study for forensic wound age estimation. Legal Med 11:S155–S160PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Reinhard B. Dettmeyer
    • 1
  1. 1.University Hospital Giessen Institute of Forensic MedicineGiessenGermany

Personalised recommendations