Reliability of GaN-Based Power Devices

  • Gaudenzio Meneghesso
  • Enrico Zanoni
  • Matteo Meneghini
  • Maria Ruzzarin
  • Isabella Rossetto
Part of the Integrated Circuits and Systems book series (ICIR)


No new product is possible without reliability: this is especially true for new and emerging technology, such as gallium nitride-based devices. For GaN power transistors, breakdown mechanisms play a significant role. The reduction of the robustness and of the long-term reliability still represents a serious issue that must be taken into consideration. The first part of the chapter deals with the above mentioned aspects and mainly focuses on the permanent degradation induced in GaN-based devices by off-state time-dependent mechanisms.


Gallium nitride Reliability Degradation Breakdown p-GaN Time to failure TDDB Failure modes Failure mechanisms Weibull 


  1. 1.
    G. Meneghesso, M. Meneghini, E. Zanoni, Breakdown mechanisms in AlGaN / GaN HEMTs : An overview. Jpn. J. Appl. Phys. 53, 100211–1001/8 (2014)CrossRefGoogle Scholar
  2. 2.
    I.B. Rowena, S.L. Selvaraj, T. Egawa, Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si. IEEE Electron Device Lett. 32(11), 1534–1536 (2011)CrossRefGoogle Scholar
  3. 3.
    E. Zanoni, M. Meneghini, A. Chini, D. Marcon, G. Meneghesso, AlGaN/GaN-based HEMTs failure physics and reliability: Mechanisms affecting gate edge and Schottky junction. IEEE Trans. Electron Devices 60(10), 3119–3131 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Joh, J.A. del Alamo, Critical voltage for electrical degradation of GaN high-electron mobility transistors. Electron Device Lett. IEEE 29(4), 287–289 (2008)CrossRefGoogle Scholar
  5. 5.
    F. Gao et al., Role of oxygen in the OFF-state degradation of AlGaN / GaN high electron mobility transistors. Appl. Phys. Lett. 99, 223506–2231/3 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Meneghini et al., OFF -state degradation of AlGaN / GaN power HEMTs : Experimental demonstration of time-dependent drain-source breakdown. IEEE Trans. Electron Devices 61(6), 1987–1992 (2014)CrossRefGoogle Scholar
  7. 7.
    S.R. Bahl, M. Van Hove, X. Kang, D. Marcon, M. Zahid, S. Decoutere, New Source-side Breakdown Mechanism in AlGaN/GaN Insulated-Gate HEMTs. Proceedings of 25th international symposium on power semicond. devices ICs, pp. 419–422, 2015Google Scholar
  8. 8.
    M. Tapajna, O. Hilt, E. Bahat-Treidel, J. Würfl, J. Kuzmík, Investigation of gate-diode degradation in normally-off p-GaN/AlGaN/GaN high-electron-mobility transistors. Appl. Phys. Lett. 107, 193506–1931/4 (2015)CrossRefGoogle Scholar
  9. 9.
    M. Tapajna, O. Hilt, J. Würfl, J. Kuzmík, Gate reliability investigation in normally-off p-type-GaN cap/AlGaN/GaN HEMTs under forward bias stress. Electron Device Lett. IEEE 37(4), 385–388 (2016)CrossRefGoogle Scholar
  10. 10.
    T.-L. Wu et al., Forward bias gate breakdown mechanism in enhancement-mode p-GaN gate AlGaN/GaN high-electron mobility transistors. IEEE Electron Device Lett. 36(10), 1001–1003 (2015)CrossRefGoogle Scholar
  11. 11.
    A.N. Tallarico et al., Investigation of the p-GaN gate breakdown in forward-biased GaN-based power HEMTs. IEEE Electron Device Lett. 38(1), 99–102 (2017)CrossRefGoogle Scholar
  12. 12.
    I. Rossetto et al., Time-dependent failure of GaN-on-Si power HEMTs with p-GaN gate. IEEE Trans. Electron Devices 63(6), 2334–2339 (2016)CrossRefGoogle Scholar
  13. 13.
    P. Moens et al., Technology and design of GaN power devices. Proceedings of 45th European solid-state device Res. conference, pp. 64–67, 2015Google Scholar
  14. 14.
    M. Meneghini et al., Extensive investigation of time-dependent breakdown of GaN-HEMTs submitted to OFF-state stress. IEEE Trans. Electron Devices 62(8), 2549–2554 (2015)CrossRefGoogle Scholar
  15. 15.
    I. Rossetto et al., Field-related failure of GaN-on-Si HEMTs : Dependence on device geometry and passivation. IEEE Trans. Electron Devices 64(1), 73–77 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Degraeve et al., New insights in the relation between electron trap generation and the statistical properties of oxide breakdown. IEEE Trans. Electron Devices 45(4), 904–911 (1998)CrossRefGoogle Scholar
  17. 17.
    R. Degraeve, B. Kaczer, G. Groeseneken, Degradation and breakdown in thin oxide layers: Mechanisms, models and reliability prediction. Microelectron. Reliab. 39(10), 1445–1460 (1999)CrossRefGoogle Scholar
  18. 18.
    M. Borga et al., Evidence of time-dependent vertical breakdown in GaN-on-Si HEMTs. IEEE Trans. Electron device 64(9), 3616–3621 (2017)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    I. Rossetto et al., Study of the stability of e-mode GaN HEMTs with p-GaN gate based on combined DC and optical analysis. Microelectron. Reliab. 64, 547–551 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Meneghini, O. Hilt, J. Wuerfl, G. Meneghesso, Technology and reliability of normally-off GaN HEMTs with p-type gate. Energies 1(10), 153 (2017)CrossRefGoogle Scholar
  22. 22.
    P. Lagger et al., Role of the dielectric for the charging dynamics of the dielectric/barrier interface in AlGaN/GaN based metal-insulator-semiconductor structures under forward gate bias stress. Appl. Phys. Lett. 105, 33512 (2014)CrossRefGoogle Scholar
  23. 23.
    G. Meneghesso et al., Trapping and reliability issues in GaN-based MIS HEMTs with partially recessed gate. Microelectron. Reliab. 58, 151–157 (2016)CrossRefGoogle Scholar
  24. 24.
    I. Rossetto et al., Impact of gate insulator on the dc and dynamic performance of AlGaN/GaN MIS-HEMTs. Microelectron. Reliab. 55, 1692–1696 (2015)CrossRefGoogle Scholar
  25. 25.
    T. Wu et al., Time dependent dielectric breakdown (TDDB) evaluation of PE-ALD SiN gate dielectrics on AlGaN / GaN recessed gate D-mode MIS-HEMTs and E-mode MIS-FETs. IEEE international reliability physics symposium, pp. 4–9, 2015Google Scholar
  26. 26.
    T. Wu et al., The impact of the gate dielectric quality in developing Au-free D-mode and E-mode recessed gate AlGaN / GaN transistors on a 200mm Si substrate. Proc. 27th international symposium on power semiconductor devices IC’s, pp. 225–228, 2015Google Scholar
  27. 27.
    T. Wu et al., Toward understanding positive bias temperature instability in fully recessed-gate GaN MISFETs. IEEE Trans. Electron Devices 63(5), 1853–1860 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Van Hove et al., Fabrication and performance of au-free AlGaN/GaN-on-silicon power devices with Al2O3 and Si3N4/Al2O3 gate dielectrics. IEEE Trans. Electron Devices 60(10), 3071–3078 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Meneghini et al., Negative bias-induced threshold voltage instability in GaN-on-Si power HEMTs. Electron Device Lett. IEEE 37(4), 474–477 (2016)CrossRefGoogle Scholar
  30. 30.
    O. Mitrofanov, M. Manfra, Mechanisms of gate lag in GaN / AlGaN / GaN high electron mobility transistors. Microelectron. Reliab. 34, 33–53, 2004 (2003)Google Scholar
  31. 31.
    W. Choi, H. Ryu, N. Jeon, M. Lee, H.-Y. Cha, K.-S. Seo, Improvement of Vth instability in normally-off GaN MIS-HEMTs employing PEALD-SiNx as an interfacial layer. Electron Device Lett. IEEE 35(1), 30–32 (2014)CrossRefGoogle Scholar
  32. 32.
    P. Lagger, C. Ostermaier, G. Pobegen, D. Pogany, Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs. Tech. Dig. - Int. Electron Devices Meet. IEDM, pp. 299–302, 2012Google Scholar
  33. 33.
    P. Lagger, M. Reiner, D. Pogany, C. Ostermaier, Comprehensive study of the complex dynamics of forward bias-induced threshold voltage drifts in GaN based MIS-HEMTs by stress / recovery experiments. IEEE Trans. Electron Devices 61(4), 1022–1030 (2014)CrossRefGoogle Scholar
  34. 34.
    X. Huang, Z. Liu, Q. Li, F.C. Lee, Evaluation and application of 600 V GaN HEMT in Cascode structure. IEEE Trans. Electron Devices 29(5), 2453–2461 (2014)Google Scholar
  35. 35.
    M. Ruzzarin et al., Evidence of hot-electron degradation in GaN- based MIS-HEMTs submitted to high temperature constant source current stress. Electron Device Lett. IEEE 37(11), 1415–1417 (2016)CrossRefGoogle Scholar
  36. 36.
    B.S. Eller, J. Yang, R.J. Nemanich, Electronic surface and dielectric interface states on GaN and AlGaN. J. Vac. Sci. Technol. A 31(5), 50807 (2013)CrossRefGoogle Scholar
  37. 37.
    E. Zanoni, G. Meneghesso, Impact ionization in compound semiconductor devices, in Handbook of Advanced Electronic and Photonic Materials and Devices, ed. by H. S. Nalwa (Ed), (Academic press, US), US, p. 2001CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gaudenzio Meneghesso
    • 1
  • Enrico Zanoni
    • 1
  • Matteo Meneghini
    • 1
  • Maria Ruzzarin
    • 1
  • Isabella Rossetto
    • 1
  1. 1.Department of Information EngineeringUniversity of Padova - DEI, PadovaPadovaItaly

Personalised recommendations