Magnetic Materials and Magnetization Process

Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 491)

Abstract

This chapter presents the description of materials from the point of view of their magnetic properties. Physical principles of mechanisms of magnetization of ferromagnetic magnetic materials, covering domain wall bending, domain wall movements and domains rotations are elaborated. Moreover, chapter presents the most useful models of magnetisation process, such as phenomenological models, Preisach model as well as Jiles-Atherton model.

References

  1. 1.
    Jaswal L, Singh B (2014) Ferrite materials: a chronological review. J Integr Sci Technol 2:69Google Scholar
  2. 2.
    Jiles DC (1998) Introduction to magnetism and magnetic materials. Chapman and HallGoogle Scholar
  3. 3.
    Kittel C (2005) Introduction to solid state physics. WileyGoogle Scholar
  4. 4.
    Bermudez A, Rodriguez R, Salgado P (2008) Numerical solution of 3D problems in terms of scalar potentials. In: Progress in industrial mathematics at ECMI 2006, Springer, p 833CrossRefGoogle Scholar
  5. 5.
    Blundell S (2003) Magnetism in condensed matter. Oxford University PressCrossRefGoogle Scholar
  6. 6.
    Tumański S (2011) Handbook of magnetic measurements. CRCCrossRefGoogle Scholar
  7. 7.
    O’Handley RC (2000) Modern magnetic materials—principles and applications WileyGoogle Scholar
  8. 8.
    Gittleman JI, Abeles B, Bozowski S (1974) Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films. Phys Rev B 9:3891.CrossRefGoogle Scholar
  9. 9.
    Soft Magnetic Materials Market by Material Type (Soft Ferrite, Electrical Steel, Cobalt), Application (Motor, Transformer, Alternator), End User Industry (Automotive, Electronics & Telecommunications, Electrical)—Global Forecast to 2026”, Report CH 4731, http://www.marketsandmarkets.com/Market-Reports/soft-magnetic-material-market-206182334.html
  10. 10.
    Moses AJ (1990) Electrical steels: past, present and future developments. IEE Proc A—Phys Sci, Meas Instrum, Manage and Educ 137:233Google Scholar
  11. 11.
    Grain oriented electrical steels (2016) AKSteels. www.aksteel.com
  12. 12.
    Jackiewicz D, Szewczyk R, Salach J (2013) Mathematical and computer modelling of the influence of stress on magnetic characteristics of the construction steels. Theor Appl Inform 25:17Google Scholar
  13. 13.
    Jackiewicz D, Szewczyk R, Bienkowski A, Kachniarz M (2015) New methodology of testing the stress dependence of magnetic hysteresis loop of the L17HMF heat resistant steel casting. J Autom Mob Robo Intell Syst 9:52Google Scholar
  14. 14.
    Jiles DC, Thoelke JB (1989) Theory of ferromagnetic hysteresis: Determination of model parameters from experimental hysteresis loops. IEEE Trans Magn 25:3928CrossRefGoogle Scholar
  15. 15.
    Narasimham K, Hanejko F, Marucci M (2008) Growth opportunities with soft magnetic materials. Hoeganaes CorporationGoogle Scholar
  16. 16.
    Agrawal D (2006) Microwave sintering of ceramics, composites and metallic materials and melting of glasses. Trans Indian Ceram Soc 65:129CrossRefGoogle Scholar
  17. 17.
    Stoppels D (1996) Developments in soft magnetic power ferrites. J Magn Magn Mater 160:323CrossRefGoogle Scholar
  18. 18.
    Tumanski S (2010) Modern magnetic materials—the review. Electr Rev 4:1Google Scholar
  19. 19.
    Shen X, Gong R, Feng Z, Liu C (2008) Preparation, microstructure and magnetic properties of NiZn ferrite thin films by spin spray plating. J Wuhan Uni Technol 23:708CrossRefGoogle Scholar
  20. 20.
    Moyer JA, Gao R, Schiffer P, Martin LW (2015) Epitaxial growth of highly-crystalline spinel ferrite thin films on perovskite substrates for all-oxide devices. Nat—Sci Rep 5:10363.Google Scholar
  21. 21.
    Ramos AV, Guittet M-J, Moussy J-B, Mattana R, Deranlot C, Petroff F, Gatel C (2007) Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers. Appl Phys Lett 91:122107CrossRefGoogle Scholar
  22. 22.
    Lane PA, Wright PJ, Oliver PE, Reeves CL, Pitt AD, Keen JM, Ward MC, Tilsley ME, Smith NA, Cockayne B, Harris IR (1997) Growth of iron, nickel, and permalloy thin films by MOCVD for use in magnetoresistive sensors. Chem Vap Deposition 3:97CrossRefGoogle Scholar
  23. 23.
    Kitada M (1991) Magnetic properties of permalloy/permalloy-oxide multilayer thin films. J Mat Sci 26:4150CrossRefGoogle Scholar
  24. 24.
    Groenland JP, Eijkel CJ, Fluitman JH, Ridder RM (1992) Permalloy thin-film magnetic sensors. Sens Actuators A 30:89CrossRefGoogle Scholar
  25. 25.
    Boll R, Warlimont H (1981) Application of amorphous magnetic materials in electronics. IEEE Trans Magn 17:3053CrossRefGoogle Scholar
  26. 26.
    Alben R, Becker J, Chi M (1978) Random anisotropy in amorphous magnets. J Appl Phys 49:1653CrossRefGoogle Scholar
  27. 27.
    Chiriac H, Ciobotaru I, Mohorianu S (1994) Magnetic and magnetoelastic properties of amorphous ribbons. IEEE Trans Magn 30:518CrossRefGoogle Scholar
  28. 28.
    Herzer G (1995) Soft magnetic nanocrystalline materials. Scripta Metall 33:1741CrossRefGoogle Scholar
  29. 29.
    Willard MA, Huang M-Q, Laughlin DE, McHenry ME, Cross JO, Harris VG, Franchetti C (1999) Magnetic properties of HITPERM (Fe, Co)88Zr7B4Cu1 magnets. J Appl Phys 85:4421CrossRefGoogle Scholar
  30. 30.
    Szewczyk R (2016) Technical B-H saturation magnetization curve models for SPICE, FEM and MoM simulations. J Autom, Mob Rob Intell Syst 10:3Google Scholar
  31. 31.
    Szewczyk R, Nowicki M, Rzeplińska-Rykała K (2016) Models of magnetic hysteresis loops useful for technical simulations using finite elements method (FEM) and method of moments (MoM). Adv Intell Syst Comput 543:82Google Scholar
  32. 32.
    Ponjavic MM, Duric MR (2007) Nonlinear modelling of the self-oscillating fluxgate current sensor. IEEE Sens J 7:1546CrossRefGoogle Scholar
  33. 33.
    Mirsky G (2015) Magnetic-core modeling offers insight into behavior, operating range, saturation, Electron Des, 9 SeptemberGoogle Scholar
  34. 34.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313.  https://doi.org/10.1093/comjnl/7.4.308MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Sablik MJ, Jiles DC (1993) Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans Magn 29(4):2113CrossRefGoogle Scholar
  36. 36.
    Ramesh A, Jiles DC, Roderik J (1996) A model of anisotropic anhysteretic magnetization. IEEE Trans Magn 32:4234–4236CrossRefGoogle Scholar
  37. 37.
    Ramesh A, Jiles DC, Bi Y (1997) Generalization of hysteresis modeling to anisotropic materials. J Appl Phys 81:5585–5587CrossRefGoogle Scholar
  38. 38.
    Szewczyk R (2014) Validation of the anhysteretic magnetization model for soft magnetic materials with perpendicular anisotropy. Mater 7:5109–5116CrossRefGoogle Scholar
  39. 39.
    Chwastek K, Szczyglowski J (2006) Identification of a hysteresis model parameters with genetic algorithms. Math Comput Simu 71:206–211.  https://doi.org/10.1016/j.matcom.2006.01.002MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Chwastek K (2012) Higher order reversal curves in some hysteresis models. Arch Electr Eng 61:455.  https://doi.org/10.2478/v10171-012-0036-9CrossRefGoogle Scholar
  41. 41.
    Lozito GM, Fulginei FR, Salvini A (2015) On the generalization capabilities of the ten-parameter Jiles-Atherton model. Math Prob Eng (715018):13.  10.1155/2015/715018
  42. 42.
    Szewczyk R (2014) Computational problems connected with Jiles-Atherton Model of magnetic hysteresis. Adv Intell Syst Comput 267:275Google Scholar
  43. 43.
    Kahaner D, Moler C, Nash S (1989) Numerical methods and software. Prentice–Hall, 1989Google Scholar
  44. 44.
    Lindner A, Hahn I, Böhm A (2013) A simple method for the parameter identification of the Jiles-Atherton model using only symmetric hysteresis loops. In: 39th Annual Conference of the IEEE Industrial Electronics Society, IECON 10–13 November 2013.  10.1109/IECON.2013.6699536
  45. 45.
    Pop NC, Caltun OF (2011) Jiles–Atherton magnetic hysteresis parameters identification. Acta Phys Pol A 120:491CrossRefGoogle Scholar
  46. 46.
    Biedrzycki R, Jackiewicz D, Szewczyk R (2014) Reliability and efficiency of differential evolution based method of determination of Jiles-Atherton model parameters for X30Cr13 corrosion resisting martensitic steel. J Autom Mob Rob Intell Syst 8:63.  https://doi.org/10.14313/JAMRIS_4-2014/39CrossRefGoogle Scholar
  47. 47.
    Preisach F (1935) Über die magnetische Nachwirkung. Zeitschrift für Physik 94:277–302CrossRefGoogle Scholar
  48. 48.
    Liorzou F, Phelps B, Atherton DL (2000) Macroscopic Models of Magnetization. IEEE Trans Magn 36(2):418CrossRefGoogle Scholar
  49. 49.
    Bhattacharyya MK, Gill HS, Simmons RF (1989) Determination of overwrite specification in thin-film head/disk systems. IEEE Trans Magn 25:4479CrossRefGoogle Scholar
  50. 50.
    Meyergoyz ID (1986) Mathematical models of hysteresis. IEEE Trans Magn 22:603CrossRefGoogle Scholar
  51. 51.
    Everett D (1955) A general approach to hysteresis—Part 4. An alternative formulation of the domain model. Trans Faraday Soc 51:1551–1557CrossRefGoogle Scholar
  52. 52.
    Bertotti G (1992) Dynamic generalization of the scalar Preisach model of hysteresis. IEEE Trans Magn 28:2599–2601CrossRefGoogle Scholar
  53. 53.
    De Wulf M, Dupré L, Melkebeek J (2000) Quasistatic measurements for hysteresis modeling. J Appl Phys 87:5239CrossRefGoogle Scholar
  54. 54.
    Frydrych P, Szewczyk R, Nowicki M (2017) Application of anisotropic vector preisach model for bulk materials. Acta Phys Pol A 131:618–620CrossRefGoogle Scholar
  55. 55.
    Sjostrom M (1999) Frequency analysis of classical preisach model. IEEE Trans Magn 35:2097CrossRefGoogle Scholar
  56. 56.
    Cao Y, Xu K, Jiang W, Droubay T, Ramuhalli P, Edwards D, Johnson BR, McCloy J (2015) Hysteresis in single and polycrystalline iron thin films: major and minor loops, first order reversal curves, and Preisach modelling. J Magn Magn Mater 395:361–375CrossRefGoogle Scholar
  57. 57.
    Szabo Z (2015) Preisach type hysteresis models with everett function in closed form COMPUMAG 2015. Montreal, CanadaGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Metrology and Biomedical Engineering, Faculty of MechatronicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations