Advertisement

Sex- and Age-Related Reference Values in Cardiology, with Annotations and Guidelines for Interpretation

  • Peter L. M. Kerkhof
  • Richard A. Peace
  • Peter W. Macfarlane
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)

Abstract

The definition of “abnormal” in clinical sciences is often based on so-called reference values which point to a range that experts by some sort of consensus consider as normal when looking at biological variables. Such a level is commonly calculated by taking (twice) the standard deviation from the mean, or considering certain percentiles. The suspicion or even confirmation of a disease is then established by demonstrating that the value measured exceeds the upper or lower reference value. As is often the case, the measurement accuracy may depend on the conditions and specific method employed to collect and analyze data. This implies that, for example, data assessed by 2D echocardiography possibly differ from those obtained by MRI and therefore require modality-specific reference values. In this review we summarize reference values for the electrocardiogram, cardiac compartmental volumes, and arterial vessel size in males and females for various age groups. These values may further depend on other variables such as body size, physical training status, and ethnicity. Additional variables relevant for cardiology such as those referring to the microcirculation and biomarkers are only mentioned with reference to the pertinent literature. In general, the sex- and age-specific differences observed are often remarkable and warrant consideration in clinical practice and basic biomedical sciences.

Keywords

Cardiology Reference values Normal limits Nomogram Ejection fraction Cutoff values Heart rate Heart rate variability Electrocardiogram Pediatric cardiology Blood pressure Pulsology Ventricular size Right ventricle Left atrium Right atrium Aortic diameter Coronary artery Coronary-aorta index Biomarkers Surrogate index Tissue Doppler imaging Age-specific analysis Sex-specific analysis Aging effects Giovanni Borelli Review 

References

  1. 1.
    Ababneh AA, Sciacca RR, Kim B, Bergmann SR. Normal limits for left ventricular ejection fraction and volumes estimated with gated myocardial perfusion imaging in patients with normal exercise test results: influence of tracer, gender, and acquisition camera. J Nucl Cardiol. 2000;7(6):661–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Addetia K, Maffessanti F, Muraru D et al. Morphologic analysis of the normal right ventricle using three-dimensional echocardiography-derived curvature indices. J Am Soc Echocardiogr. 2018. pii: S0894-7317(17)30883-0. https://doi.org/10.1016/j.echo.2017.12.009.
  3. 3.
    American Psychological Association (APA). Definition of terms: sex and gender. 2012. https://www.apa.org/pi/lgbt/resources/sexuality-definitions.pdf. Accessed 5 Feb 2018.
  4. 4.
    Asanoi H, Sasayama S, Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res. 1989;65:483–93.CrossRefPubMedGoogle Scholar
  5. 5.
    Aune E, Baekkevar M, Rødevand O, Otterstad JE. The limited usefulness of real-time 3-dimensional echocardiography in obtaining normal reference ranges for right ventricular volumes. Cardiovasc Ultrasound. 2009;7:35. https://doi.org/10.1186/1476-7120-7-35.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Aune E, Baekkevar M, Rødevand O, Otterstad JE. Reference values for left ventricular volumes with real-time 3-dimensional echocardiography. Scand Cardiovasc J. 2010;44:24–30.CrossRefPubMedGoogle Scholar
  7. 7.
    Avolio AP, Kuznetsova T, Heyndrickx GR, Kerkhof PLM, Li JJ-K. Arterial flow, pulse pressure and pulse wave velocity in men and women at various ages. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-77932-4_10.
  8. 8.
    Bedford DE. The ancient art of feeling the pulse. Br Heart J. 1951;13:423–37.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, Pennell DJ. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J. 2000;21(16):1387–96.CrossRefPubMedGoogle Scholar
  10. 10.
    Bernard A, Addetia K, Dulgheru R, et al. 3D echocardiographic reference ranges for normal left ventricular volumes and strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18(4):475–83. https://doi.org/10.1093/ehjci/jew284.CrossRefPubMedGoogle Scholar
  11. 11.
    Bhave NM, Lang RM. Evaluation of left ventricular structure and function by three-dimensional echocardiography. Curr Opin Crit Care. 2013;19:387–96. https://doi.org/10.1097/MCC.0b013e328364d75e.CrossRefPubMedGoogle Scholar
  12. 12.
    Biering-Sørensen T, Biering-Sørensen SR, et al. Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population: the Copenhagen City Heart Study. Circ Cardiovasc Imaging. 2017;10(3):pii: e005521. https://doi.org/10.1161/CIRCIMAGING.116.005521.CrossRefGoogle Scholar
  13. 13.
    Bjerregaard P. Mean 24 hour heart rate, minimal heart rate and pauses in healthy subjects 40–79 years of age. Eur Heart J. 1983;4:44–51.CrossRefPubMedGoogle Scholar
  14. 14.
    Buccheri S, Costanzo L, Tamburino C, Monte I. Reference values for real time three-dimensional echocardiography-derived left ventricular volumes and ejection fraction: review and meta-analysis of currently available studies. Echocardiography. 2015;32:1841–50. https://doi.org/10.1111/echo.12972.CrossRefPubMedGoogle Scholar
  15. 15.
    Buonanno C, Arbustini E, Rossi L, Dander B, Vassanelli C, Paris B, Poppi A. Left ventricular function in men and women. Another difference between sexes. Eur Heart J. 1982;3:525–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Calvo M, Le Rolle V, Romero D, Béhar N, Gomis P, Mabo P, Hernández A. Gender differences in the autonomic response to exercise testing in Brugada syndrome. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-77932-4_12
  17. 17.
    Cantinotti M, Kutty S, Giordano R, Assanta N, Murzi B, Crocetti M, Marotta M, Iervasi G. Review and status report of pediatric left ventricular systolic strain and strain rate nomograms. Heart Fail Rev. 2015;20(5):601–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Cattermole GN, Leung PY, Ho GY, Lau PW, Chan CP, Chan SS, Smith BE, Graham CA, Rainer TH. The normal ranges of cardiovascular parameters measured using the ultrasonic cardiac output monitor. Physiol Rep. 2017;5:pii: e13195. https://doi.org/10.14814/phy2.13195.CrossRefGoogle Scholar
  19. 19.
    Chahal NS, Lim TK, Jain P, et al. Population-based reference values for 3D echocardiographic LV volumes and ejection fraction. JACC Cardiovasc Imaging. 2012;5:1191–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Choi JO, Shin MS, Kim MG, et al. Normal echocardiographic measurements in a Korean population study: part II. Doppler and Tissue Doppler Imaging. J Cardiovasc Ultrasound. 2016;24:144–52. https://doi.org/10.4250/jcu.2016.24.2.144.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Choy JS, Kassab GS. Scaling of myocardial mass to flow and morphometry of coronary arteries. J Appl Physiol (1985). 2008;104(5):1281–6. https://doi.org/10.1152/japplphysiol.01261.2007.CrossRefGoogle Scholar
  22. 22.
    Churchill TW, Baggish AL. Is big truly bad? Aortic dilation in former national football league players. Circ Cardiovasc Imaging. 2017;10(11):pii: e007157. https://doi.org/10.1161/CIRCIMAGING.117.007157.CrossRefGoogle Scholar
  23. 23.
    Daimon M, et al. Normal values of echocardiographic parameters in relation to age in a healthy Japanese population: the JAMP study. Circ J. 2008;72:1859–66.CrossRefPubMedGoogle Scholar
  24. 24.
    Dallaire F, Sarkola T. Growth of cardiovascular structures from the fetus to the young adult. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-77932-4_22.
  25. 25.
    D’Andrea A, Riegler L, Rucco MA, et al. Left atrial volume index in healthy subjects: clinical and echocardiographic correlates. Echocardiography. 2013;30(9):1001–7.PubMedGoogle Scholar
  26. 26.
    Dickerson JA, Nagaraja HN, Raman SV. Gender-related differences in coronary artery dimensions: a volumetric analysis. Clin Cardiol. 2010 Feb;33(2):E44–9. https://doi.org/10.1002/clc.20509.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE. Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;59:1799–808. https://doi.org/10.1016/j.jacc.2012.01.037.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fisman EZ, Frank AG, Ben-Ari E, Kessler G, Pines A, Drory Y, Kellermann JJ. Altered left ventricular volume and ejection fraction responses to supine dynamic exercise in athletes. J Am Coll Cardiol. 1990;15:582–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Fogel MA. Use of ejection fraction (or lack thereof), morbidity/mortality and heart failure drug trials: a review. Int J Cardiol. 2002;84:119–32.CrossRefPubMedGoogle Scholar
  30. 30.
    Foppa M, Arora G, Gona P, Ashrafi A, Salton CJ, Yeon SB, Blease SJ, Levy D, O'Donnell CJ, Manning WJ, Chuang ML. Right ventricular volumes and systolic function by cardiac magnetic resonance and the impact of sex, age, and obesity in a longitudinally followed cohort free of pulmonary and cardiovascular disease. Circ Cardiovasc Imaging. 2016;9:e003810. https://doi.org/10.1161/CIRCIMAGING.115.003810.CrossRefPubMedGoogle Scholar
  31. 31.
  32. 32.
    Foschi M, Di Mauro M, Tancredi F, et al. The dark side of the moon: the right ventricle. J Cardiovasc Dev Dis. 2017;4(4):pii: E18. https://doi.org/10.3390/jcdd4040018.CrossRefGoogle Scholar
  33. 33.
    Fu Q. Hemodynamic and electrocardiographic aspects of uncomplicated singleton pregnancy. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-77932-4_26.
  34. 34.
    Fukuda S, Watanabe H, Daimon M, et al. Normal values of real-time 3-dimensional echocardiographic parameters in a healthy Japanese population: the JAMP-3D study. Circ J. 2012;76:1177–81.CrossRefPubMedGoogle Scholar
  35. 35.
    Fye WB. Giovanni Alfonso Borelli. Clin Cardiol. 1996;19:599–600.CrossRefPubMedGoogle Scholar
  36. 36.
    Gebhard C, Buechel RR, Stähli BE, Gransar H, Achenbach S, Berman DS, et al. Impact of age and sex on left ventricular function determined by coronary computed tomographic angiography: results from the prospective multicentre CONFIRM study. Europ Heart J Imag. 2017;18:990–1000.Google Scholar
  37. 37.
    Gedeon A. Science and Technology in Medicine. New York: Springer; 2006.Google Scholar
  38. 38.
    Gent S, Kleinbongard P, Dammann P, Neuhäuser M, Heusch G. Heart rate reduction and longevity in mice. Basic Res Cardiol. 2015;110:2. https://doi.org/10.1007/s00395-014-0460-7.CrossRefPubMedGoogle Scholar
  39. 39.
    Gopal AS, Chukwu EO, Iwuchukwu CJ, Katz AS, Toole RS, Schapiro W, Reichek N. Normal values of right ventricular size and function by real-time 3-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2007;20:445–55. https://doi.org/10.1016/j.echo.2006.10.027.CrossRefPubMedGoogle Scholar
  40. 40.
    Graham TP Jr, Jarmakani MM, Canent RV Jr, Capp MP, Spach MS. Characterization of left heart volumes and mass in normal children and in infants with intrinsic myocardial disease. Circulation. 1968;38:826–37.CrossRefPubMedGoogle Scholar
  41. 41.
    Hamill N, Yeo L, Romero R, Hassan SS, Myers SA, Mittal P, Kusanovic JP, et al. Fetal cardiac ventricular volume, cardiac output, and ejection fraction determined with 4-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis. Am J Obstet Gynecol. 2011;205:76.e1–10. https://doi.org/10.1016/j.ajog.2011.02.028.CrossRefGoogle Scholar
  42. 42.
    Hannan EL, Zhong Y, Wu C, et al. Comparison of 3-year outcomes for coronary artery bypass graft surgery and drug-eluting stents: does sex matter? Ann Thorac Surg. 2015;100(6):2227–36.CrossRefPubMedGoogle Scholar
  43. 43.
    Herbert A, Cruickshank JK, Laurent S, Boutouyrie P. Reference values for arterial measurements collaboration. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 2014;35:3122–33. https://doi.org/10.1093/eurheartj/ehu293.CrossRefPubMedGoogle Scholar
  44. 44.
    Herity NA, Lo S, Lee DP, Ward MR, Filardo SD, Yock PG, Fitzgerald PJ, Hunt SA, Yeung AC. Effect of a change in gender on coronary arterial size: a longitudinal intravascular ultrasound study in transplanted hearts. J Am Coll Cardiol. 2003;41:1539–46.CrossRefPubMedGoogle Scholar
  45. 45.
    Hiteshi AK, Li D, Gao Y, Chen A, Flores F, Mao SS, Budoff MJ. Gender differences in coronary artery diameter are not related to body habitus or left ventricular mass. Clin Cardiol. 2014;37:605–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Huxley VH, Kemp SS. Sex-specific characteristics of the microcirculation. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-77932-4_20.
  47. 47.
    Ioannidis JP, Trikalinos TA, Danias PG. Electrocardiogram-gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction: a meta-analysis. J Am Coll Cardiol. 2002;39:2059–68.CrossRefPubMedGoogle Scholar
  48. 48.
    JAMA. Giovanni Borelli (1608–1679) – Iatromechanical physiologist. JAMA 1966;195:485. doi:https://doi.org/10.1001/jama.1966.03100060125039
  49. 49.
    Jensen MT, Wod M, Galatius S, Hjelmborg JB, Jensen GB, Christensen K. Heritability of resting heart rate and association with mortality in middle-aged and elderly twins. Heart. 2018;104:30–6. https://doi.org/10.1136/heartjnl-2016-310986.CrossRefPubMedGoogle Scholar
  50. 50.
    Kaess BM, Gona P, Larson MG, Cheng S, Aragam J, Kenchaiah S, Benjamin EJ, Vasan RS. Secular trends in echocardiographic left ventricular mass in the community: the Framingham heart study. Heart. 2013;99:1693–8. https://doi.org/10.1136/heartjnl-2013-304600.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kappus RM, Ranadive SM, Yan H, et al. Sex differences in autonomic function following maximal exercise. Biol Sex Differ. 2015;6:28. https://doi.org/10.1186/s13293-015-0046-6.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Karagol BS, Orun UA, Zenciroglu A, Yuksel SP, Okumus N, Karademir S. The diameter of coronary arteries in healthy newborns at birth, 1 and 6 months of ages. J Matern Fetal Neonatal Med. 2012 Dec;25(12):2729–34. https://doi.org/10.3109/14767058.2012.718390.CrossRefPubMedGoogle Scholar
  53. 53.
    Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015;17:29. https://doi.org/10.1186/s12968-015-0111-7.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kerkhof PLM. Importance of end-systolic volume for the evaluation of cardiac pump performance. In: Chazov EI, Smirnov VN, Oganov RG, editors. Cardiology, An International Perspective. New York: Plenum Press; 1984. p. 1339–52.Google Scholar
  55. 55.
    Kerkhof PLM. Characterizing heart failure in the ventricular volume domain. Clinical Medicine Insights: Cardiology. 2015;9(S1):11–31.PubMedGoogle Scholar
  56. 56.
    Kerkhof PLM, Kresh JY, Li JK-J, Heyndrickx GR. Left ventricular volume regulation in heart failure with preserved ejection fraction. Physiol Rep. 2013;1:e00007.Google Scholar
  57. 57.
    Kerkhof PLM, Heyndrickx GR, Li JJ-K. Hemodynamic determinants and ventriculo-arterial coupling are sex-associated in heart failure patients. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:3286–9. https://doi.org/10.1109/EMBC.2016.7591430.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kerkhof PLM, Yoo BW, Merillon JP, Peace RA, Handly N. Monte Carlo method applied to the evaluation of the relationship between ejection fraction and its constituent components. Conf Proc IEEE Eng Med Biol Soc. 2017a:1295–8. https://doi.org/10.1109/EMBC.2017.8037069.
  59. 59.
    Kerkhof PLM, Yoo BW, van de Ven PM, Handly N. Sex-specific aspects of left and right ventricular volume regulation in patients following tetralogy of Fallot repair. Conf Proc IEEE Eng Med Biol Soc. 2017b;2017:1303–6. https://doi.org/10.1109/EMBC.2017.8037071.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kerkhof PL, Peace RA, Handly P. Importance of (measuring) the end-systolic volume index in predicting survival. Heart. 2018a;104:180. https://doi.org/10.1136/heartjnl-2017-312051.CrossRefGoogle Scholar
  61. 61.
    Kerkhof PL, van de Ven PM, Yoo BW, Peace RA, Heyndrickx GR, Handly N. Ejection fraction as related to basic components in the left and right ventricular volume domains. Int J Cardiol. 2018b;255:105–10.CrossRefPubMedGoogle Scholar
  62. 62.
    Kerkhof PLM, Kuznetsova T, Kresh JY, Handly N. Cardiophysiology illustrated by comparing ventricular volumes in healthy adult males and females, in: Sex-specific analysis of cardiovascular function (PLM Kerkhof & VM Miller, eds), New York, Springer 2018c. https://doi.org/10.1007/978-3-319-77932-4_8.
  63. 63.
    Kerkhof PLM, Peace RA, Heyndrickx GR, Meijboom LJ, Sprengers RW, Handly N. Heart function analysis in cardiac patients with focus on sex-specific aspects. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018d. https://doi.org/10.1007/978-3-319-77932-4_23.
  64. 64.
    Kerkhof PLM, Parry G. Sex-specific aspects in cardiac transplantation evaluated by left ventricular size in male and female recipients. FASEB J. 2018. https://www.fasebj.org/doi/10.1096/fasebj.2018.32.1_supplement.901.1.
  65. 65.
    Kerkhof PLM, Kuznetsova T, Ali R, Handly N. Left ventricular volume analysis as a basic tool to describe cardiac function. Adv Physiol Educ. 2018f;42:130–9. https://doi.org/10.1152/advan.00140.2017.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288–310. https://doi.org/10.1016/j.neubiorev.2016.03.007.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Kovalova S, Necas J, Vespalec J. What is a “normal” right ventricle? Eur J Echocardiogr. 2006;7:293–7. https://doi.org/10.1016/j.euje.2005.06.010.CrossRefPubMedGoogle Scholar
  68. 68.
    Kucher N, Lipp E, Schwerzmann M, Zimmerli M, Allemann Y, Seiler C. Gender differences in coronary artery size per 100 g of left ventricular mass in a population without cardiac disease. Swiss Med Wkly. 2001;131:610–5.PubMedGoogle Scholar
  69. 69.
    Lancellotti P, Galderisi M, Edvardsen T, et al. Echo-Doppler estimation of left ventricular filling pressure: results of the multicentre EACVI Euro-Filling study. Eur Heart J Cardiovasc Imaging. 2017;18(9):961–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14. https://doi.org/10.1016/j.echo.2014.10.003.CrossRefPubMedGoogle Scholar
  71. 71.
    Langfy M. Cardiology in perspective. Gothenburg: Medicosport; 1976.Google Scholar
  72. 72.
    Levy PT, Sanchez Mejia AA, Machefsky A, Fowler S, Holland MR, Singh GK. Normal ranges of right ventricular systolic and diastolic strain measures in children: a systematic review and meta-analysis. J Am Soc Echocardiography. 2014;27:549–60.CrossRefGoogle Scholar
  73. 73.
    Li JK-J. cardiovascular allometry: analysis, methodology, and clinical applications. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-77932-4_14.
  74. 74.
    Lieb W, Xanthakis V, Sullivan LM, Aragam J, Pencina MJ, Larson MG, Benjamin EJ, Vasan RS. Longitudinal tracking of left ventricular mass over the adult life course: clinical correlates of short- and long-term change in the Framingham offspring study. Circulation. 2009;119(24):3085–92.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Lin FY, Devereux RB, Roman MJ, et al. Cardiac chamber volumes, function, and mass as determined by 64-multidetector row computed tomography: mean values among healthy adults free of hypertension and obesity. JACC Cardiovasc Imaging. 2008;1:782–6. https://doi.org/10.1016/j.jcmg.2008.04.015.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Löllgen H. Kardiopulmonale Funktionsdiagnostik. Weh/Baden: Documenta Geigy; 1983.Google Scholar
  77. 77.
    Lopez L, Colan S, Stylianou M, et al. Relationship of echocardiographic z scores adjusted for body surface area to age, sex, race, and ethnicity. Circulation Cardiovasc Imag. 2017;10:e006979.CrossRefGoogle Scholar
  78. 78.
    Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson. 1999;1:7–21. https://doi.org/10.3109/10976649909080829.CrossRefPubMedGoogle Scholar
  79. 79.
    Maceira AM, Prasad SK, Khan M, Pennell DJ. Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J. 2006;27:2879–88.CrossRefPubMedGoogle Scholar
  80. 80.
    Macfarlane PW, van Oosterom A, Janse M, Kligfield P, Camm J, Pahlm O, editors. Comprehensive Electrocardiology. London: Springer; 2011.Google Scholar
  81. 81.
    Macfarlane PW. The influence of age and sex on the electrocardiogram. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-77932-4_6.
  82. 82.
    Maffessanti F, Muraru D, Esposito R, et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging. 2013;6:700–10.CrossRefPubMedGoogle Scholar
  83. 83.
    Medicographia: heart rate modulation and exercise capacity. 2012; 34(4). www.medicographia.com
  84. 84.
    Mingels AMA, Kimenai DM. Sex related aspects of biomarkers in cardiac disease. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-77932-4_33.
  85. 85.
    Muraru D, Badano LP, Peluso D, et al. Comprehensive analysis of left ventricular geometry and function by three-dimensional echocardiography in healthy adults. J Am Soc Echocardiogr. 2013;26(6):618–28. https://doi.org/10.1016/j.echo.2013.03.014.CrossRefPubMedGoogle Scholar
  86. 86.
    Muraru D, Onciul S, Peluso D, et al. Sex- and method-specific reference values for right ventricular strain by 2-dimensional speckle-tracking echocardiography. Circ Cardiovasc Imaging. 2016;9(2):e003866. https://doi.org/10.1161/CIRCIMAGING.115.003866.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2 Suppl 4th Report):555–76.CrossRefGoogle Scholar
  88. 88.
    Nevill AM, Bate S, Holder RL. Modeling physiological and anthropometric variables known to vary with body size and other confounding variables. Am J Phys Anthropol. 2005;(Suppl 41):141–53.CrossRefGoogle Scholar
  89. 89.
    Niebauer J, Clark AL, Anker SD, Coats AJ. Three year mortality in heart failure patients with very low left ventricular ejection fractions. Int J Cardiol. 1999;70(3):245–7.CrossRefPubMedGoogle Scholar
  90. 90.
    Nio AQ, Stöhr EJ, Shave R. The female human heart at rest and during exercise: a review. Eur J Sport Sci. 2015;15(4):286–95. https://doi.org/10.1080/17461391.2014.936323.CrossRefPubMedGoogle Scholar
  91. 91.
    O’Neal WT, Chen LY, Nazarian S, Soliman EZ. Reference ranges for short-term heart rate variability measures in individuals free of cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis (MESA). J Electrocardiol. 2016;49:686–90. https://doi.org/10.1016/j.jelectrocard.2016.06.008.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Ochs MM, Fritz T, André F, et al. A comprehensive analysis of cardiac valve plane displacement in healthy adults: age-stratified normal values by cardiac magnetic resonance. Int J Cardiovasc Imaging. 2017 May;33(5):721–9. https://doi.org/10.1007/s10554-016-1058-y.CrossRefPubMedGoogle Scholar
  93. 93.
    Ostenfeld EA, Flachskampf F. Assessment of right ventricular volumes and ejection fraction by echocardiography: from geometric approximations to realistic shapes. Echo Res Pract. 2015;2(1):R1–R11. https://doi.org/10.1530/ERP-14-0077.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Pagani M, Sala R, Malacarne M, Lucini D. Benchmarking heart rate variability to overcome sex-related bias. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-77932-4_13
  95. 95.
    Peace RA, Adams PC, Lloyd JJ. Effect of sex, age, and weight on ejection fraction and end-systolic volume reference limits in gated myocardial perfusion SPECT. J Nucl Cardiol. 2008;15:86–93.CrossRefPubMedGoogle Scholar
  96. 96.
    Peluso D, Badano LP, Muraru D, et al. Right atrial size and function assessed with three-dimensional and speckle-tracking echocardiography in 200 healthy volunteers. Eur Heart J Cardiovasc Imaging. 2013;14(11):1106–14.CrossRefPubMedGoogle Scholar
  97. 97.
    Petersen SE, Aung N, Sanghvi MM, et al. Reference ranges for cardiac structure and function using Cardiovascular Magnetic Resonance (CMR) in Caucasians from the UK Biobank population cohort. J Cardiovasc Magn Reson. 2017;19(1):18.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Pfaffenberger S, Bartko P, Graf A, et al. Size matters! Impact of age, sex, height, and weight on the normal heart size. Circ Cardiovasc Imag. 2013;6:1073–9.CrossRefGoogle Scholar
  99. 99.
    Pressler A, Haller B, Scherr J, Heitkamp D, Esefeld K, Boscheri A, Wolfarth B, Halle M. Association of body composition and left ventricular dimensions in elite athletes. Eur J Prev Cardiol. 2012;19(5):1194–204.CrossRefPubMedGoogle Scholar
  100. 100.
    Rainer TH, Cattermole GN, Graham CA, Chan SS. Anthropometric and physiological measurements in healthy children. Hong Kong Med J. 2013 Dec;19(Suppl 9):26–9.PubMedGoogle Scholar
  101. 101.
    Rautaharju PM. The female electrocardiogram: special repolarization features, gender differences, and the risk of adverse cardiac events. Cham: Springer; 2015.CrossRefGoogle Scholar
  102. 102.
    Rijnbeek PR, Witsenburg M, Schrama E, Hess J, Kors JA. New normal limits for the paediatric electrocardiogram. Eur Heart J. 2001 Apr;22(8):702–11.CrossRefPubMedGoogle Scholar
  103. 103.
    Robbers-Visser D, Boersma E, Helbing WA. Normal biventricular function, volumes, and mass in children aged 8 to 17 years. J Magn Reson Imaging. 2009;29:552–9.CrossRefPubMedGoogle Scholar
  104. 104.
    Rominger MB, Bachmann GF, Pabst W, Rau WS. Right ventricular volumes and ejection fraction with fast cine MR imaging in breath-hold technique: applicability, normal values from 52 volunteers, and evaluation of 325 adult cardiac patients. J Magn Reson Imaging. 1999;10:908–18.CrossRefPubMedGoogle Scholar
  105. 105.
    Rösner A, Bijnens B, Hansen M, How OJ, Aarsaether E, Müller S, Sutherland GR, Myrmel T. Left ventricular size determines tissue Doppler-derived longitudinal strain and strain rate. Eur J Echocardiogr. 2009;10:271–7.CrossRefPubMedGoogle Scholar
  106. 106.
    Russo C, Jin Z, Homma S, Rundek T, Elkind MSV, Sacco RL, Di Tullio MR. LA phasic volumes and reservoir function in the elderly by real-time 3D echocardiography: normal values, prognostic significance, and clinical correlates. JACC Cardiovasc Imaging. 2017;10(9):976–85. https://doi.org/10.1016/j.jcmg.2016.07.015.CrossRefPubMedGoogle Scholar
  107. 107.
    Ryu DR. Normal reference values for Doppler echocardiography: influences of ageing, gender and ethnicity. J Cardiovasc Ultrasound. 2016;24:112–4. https://doi.org/10.4250/jcu.2016.24.2.112.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Sammito S, Böckelmann I. New reference values of heart rate variability during ordinary daily activity. Heart Rhythm. 2017;14(2):304–7. https://doi.org/10.1016/j.hrthm.2016.12.016.CrossRefPubMedGoogle Scholar
  109. 109.
    Santamore WP, Bove AA. Why are arteries the size they are? J Appl Physiol (1985). 2008;104(5):1259. https://doi.org/10.1152/japplphysiol.90391.2008.CrossRefGoogle Scholar
  110. 110.
    Sarikouch S, Peters B, Gutberlet M, Leismann B, Kelter-Kloepping A, Koerperich H, Kuehne T, Beerbaum P. Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging. 2010;3(1):65–76.CrossRefPubMedGoogle Scholar
  111. 111.
    Saura D, Dulgheru R, Caballero L, et al. Two-dimensional transthoracic echocardiographic normal reference ranges for proximal aorta dimensions: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18(2):167–79. https://doi.org/10.1093/ehjci/jew053.CrossRefPubMedGoogle Scholar
  112. 112.
    Schvartzman PR, Fuchs FD, Mello AG, Coli M, Schvartzman M, Moreira LB. Normal values of echocardiographic measurements. A population-based study. Arq Bras Cardiol. 2000;75:107–14.CrossRefPubMedGoogle Scholar
  113. 113.
    Sheifer SE, Canos MR, Weinfurt KP, et al. Sex differences in coronary artery size assessed by intravascular ultrasound. Am Heart J. 2000;139:649–53.CrossRefPubMedGoogle Scholar
  114. 114.
    Shi J, Pan C, Kong D, Cheng L, Shu X. Left ventricular longitudinal and circumferential layer-specific myocardial strains and their determinants in healthy subjects. Echocardiography. 2016;33:510–8. https://doi.org/10.1111/echo.13132.CrossRefPubMedGoogle Scholar
  115. 115.
    Støylen A, Mølmen HE, Dalen H. Relation between mitral annular plane systolic excursion and global longitudinal strain in normal subjects: the HUNT study. Echocardiography. 2018. https://doi.org/10.1111/echo.13825.
  116. 116.
    Tan TH, Wong KY, Cheng TK, Heng JT. Coronary normograms and the coronary-aorta index: objective determinants of coronary artery dilatation. Pediatr Cardiol. 2003;24(4):328–35.CrossRefPubMedGoogle Scholar
  117. 117.
    Tandri H, Daya SK, Nasir K, Bomma C, Lima JA, Calkins H, Bluemke DA. Normal reference values for the adult right ventricle by magnetic resonance imaging. Am J Cardiol. 2006;98(12):1660–4.CrossRefPubMedGoogle Scholar
  118. 118.
    Taqueti VR. Sex differences in the coronary system. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-77932-4_17.
  119. 119.
    Tardif JC. Heart rate as a treatable cardiovascular risk factor. Br Med Bull. 2009;90:71–84. https://doi.org/10.1093/bmb/ldp016.CrossRefPubMedGoogle Scholar
  120. 120.
    Tasevska-Dinevska G, Kennedy LM, Cline-Iwarson A, Cline C, Erhardt L, Willenheimer R. Gender differences in variables related to B-natriuretic peptide, left ventricular ejection fraction and mass, and peak oxygen consumption, in patients with heart failure. Int J Cardiol. 2011;149:364–71. https://doi.org/10.1016/j.ijcard.2010.02.018.CrossRefPubMedGoogle Scholar
  121. 121.
    Thompson A, Crilley J, Wilson D, Hungin APS, Fuat A, Murphy J. An epidemic of HFpEF? Heart. 2016;102(Suppl 6):A15–6.CrossRefGoogle Scholar
  122. 122.
    Udelson JE. Left ventricular shape: the forgotten stepchild of remodeling parameters. JACC Heart Fail. 2017;5(3):179–81. https://doi.org/10.1016/j.jchf.2017.01.005.CrossRefPubMedGoogle Scholar
  123. 123.
    van Beek JH, Kirkwood TB, Bassingthwaighte JB. Understanding the physiology of the ageing individual: computational modelling of changes in metabolism and endurance. Interface Focus. 2016;6:20150079. https://doi.org/10.1098/rsfs.2015.0079.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Vriz O, Aboyans V, D'Andrea A, et al. Normal values of aortic root dimensions in healthy adults. Am J Cardiol. 2014;114(6):921–7. https://doi.org/10.1016/j.amjcard.2014.06.028.CrossRefPubMedGoogle Scholar
  125. 125.
    Wood PW, Choy JB, Nanda NC, Becher H. Left ventricular ejection fraction and volumes: it depends on the imaging method. Echocardiography. 2014;31:87–100.CrossRefPubMedGoogle Scholar
  126. 126.
    Yamada AT, Campos Neto Gde C, Soares J Jr, Giorgi MC, Araújo F, Meneghetti JC, Mansur AJ. Gender differences in ventricular volumes and left ventricle ejection fraction estimated by myocardial perfusion imaging: comparison of Quantitative Gated SPECT (QGS) and Segami software programs. Arq Bras Cardiol. 2007;88:285–90.CrossRefPubMedGoogle Scholar
  127. 127.
    Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26(2):185–91. https://doi.org/10.1016/j.echo.2012.10.008.CrossRefPubMedGoogle Scholar
  128. 128.
    Zemrak F, Ambale-Venkatesh B, Captur G, et al. Left atrial structure in relationship to age, sex, ethnicity, and cardiovascular risk factors: MESA (Multi-Ethnic Study of Atherosclerosis). Circ Cardiovasc Imaging. 2017;10(2):pii: e005379. https://doi.org/10.1161/CIRCIMAGING.116.005379.CrossRefGoogle Scholar
  129. 129.
    Ziman J. The force of knowledge; the scientific dimension of society. Cambridge: Cambridge University Press; 1976.Google Scholar
  130. 130.
    Zusterzeel R. Safety and effectiveness of medical device therapy. In: Kerkhof PLM, Miller VM, editors. Sex-specific analysis of cardiovascular function. New York: Springer; 2018. https://doi.org/10.1007/978-3-319-77932-4_7.
  131. 131.
    Kerkhof PLM, MÕrillon JP, Yoo BE, Peace RA, Parry G, Heyndrickx GR, Kuznetsova T, Meijboom LJ, Sprengers RW, Park HK, Handly, N. The Pythagorean theorem reveals the inherent companion of cardiac ejection fraction. Int J Cardiol. 2018. https://doi.org/10.1016/j.ijcard.2018.06.074

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiology and Nuclear Medicine, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands
  2. 2.Department of Nuclear Medicine, Royal Victoria InfirmaryNewcastle upon TyneUK
  3. 3.Institute of Health and Wellbeing, Electrocardiology Group, University of GlasgowGlasgow, ScotlandUK

Personalised recommendations