Advertisement

Genome-Wide Association Studies and Risk Scores for Coronary Artery Disease: Sex Biases

  • Sean G. Byars
  • Mike Inouye
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)

Abstract

Phenotypic sex differences in coronary artery disease (CAD) and its risk factors have been apparent for many decades in basic and clinical research; however, whether these are also present at the gene level and thus influence genome-wide association and genetic risk prediction studies has often been ignored. From fundamental and medical standpoints, this is critically important to assess in order to fully understand the underlying genetic architecture that predisposes to CAD and better predict disease outcomes based on the interaction between genes, sex effects, and environment. In this chapter we aimed to (1) integrate the history and latest research from genome-wide association studies for CAD and clinical and genetic risk scores for prediction of CAD, (2) highlight sex-specific differences in these areas of research, and (3) discuss reasons why sex differences have often not been considered and, where present, why sex differences exist at genetic and phenotypic levels and how important they are for consideration in future research. While we find interesting examples of sex differences in effects of genetic variants on CAD, genome-wide association and genetic risk studies have typically not tested for sex-specific effects despite mounting evidence from diverse fields that these are likely very important to consider at both the genetic and phenotypic levels. In-depth testing for sex effects in large-scale genome-wide association studies that include autosomal and often excluded sex chromosomes alongside parallel improvements in resolution of sex-specific differences for risk factors and disease outcomes for CAD has the potential to substantially improve clinical and genetic risk prediction studies. Developing sex-tailored genetic risk scores as has been done recently for other disorders might be also warranted for CAD. In the era of precision medicine, this level of accuracy is essential for such a common and costly disease.

Keywords

GWAS Coronary risk factors Single nucleotide polymorphism Sex-specific analysis Genetic risk score Women’s Genome Health Study 

Notes

Acknowledgments

The Framingham Heart Study (FHS) dataset was obtained from dbGaP (phs000007), approved by the University of Melbourne Health Sciences Human Ethics Sub-Committee (HREC 1442186). The FHS is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195 and HHSN268201500001I). This chapter was not prepared in collaboration with investigators of the Framingham Heart Study and does not necessarily reflect the opinions or views of the Framingham Heart Study, Boston University, or NHLBI. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the chapter.

References

  1. 1.
    Wong ND, Levy D. Legacy of the Framingham heart study: rationale, design, initial findings, and implications. Glob Heart. 2013;8:3–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, et al. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–47.PubMedCrossRefGoogle Scholar
  3. 3.
    National Cholesterol Education Program Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002;106:3143–421.Google Scholar
  4. 4.
    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection. Evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285(19):2486–97.CrossRefGoogle Scholar
  5. 5.
    Lenfant C. Shattuck lecture – clinical research to clinical practice – lost in translation? N Engl J Med. 2003;349:868–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Fletcher B, Berra K, Ades P, Braun LT, Burke LE, et al. Managing abnormal blood lipids: a collaborative approach. Circulation. 2005;112:3184–209.PubMedCrossRefGoogle Scholar
  7. 7.
    Goldstein LB, Bushnell CD, Adams RJ, Appel LJ, Braun LT, et al. Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:517–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women – 2011 update: a guideline from the American Heart Association. Circulation. 2011;123:1243–62.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pletcher MJ, Moran AE. Cardiovascular risk assessment. Med Clin North Am. 2017;101:673–88.PubMedCrossRefGoogle Scholar
  10. 10.
    Bastuji-Garin S, Deverly A, Moyse D, Castaigne A, Mancia G, et al. The Framingham prediction rule is not valid in a European population of treated hypertensive patients. J Hypertens. 2002;20:1973–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Brindle P, Emberson J, Lampe F, Walker M, Whincup P, et al. Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study. BMJ. 2003;327:1267.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cook NR, Paynter NP, Eaton CB, Manson JE, Martin LW, et al. Comparison of the Framingham and Reynolds risk scores for global cardiovascular risk prediction in the multiethnic Women’s Health Initiative. Circulation. 2012;125:1748–56. S1741–1711.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, et al. General cardiovascular risk profile for use in primary care: the Framingham heart study. Circulation. 2008;117:743–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu J, Hong Y, D’Agostino RB Sr, Wu Z, Wang W, et al. Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese multi-provincial cohort study. JAMA. 2004;291:2591–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Ridker PM, Cook NR. Statins: new American guidelines for prevention of cardiovascular disease. Lancet. 2013;382:1762–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290:898–904.PubMedCrossRefGoogle Scholar
  17. 17.
    Greenland P, Knoll MD, Stamler J, Neaton JD, Dyer AR, et al. Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA. 2003;290:891–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds risk score. JAMA. 2007;297:611–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR. C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation. 2008;118:2243–51. 2244p following 2251.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation. 2002;105:310–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24:987–1003.PubMedCrossRefGoogle Scholar
  22. 22.
    Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, Minhas R, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336:1475–82.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol. 1989;129:687–702.Google Scholar
  24. 24.
    Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, et al. The cardiovascular health study: design and rationale. Ann Epidemiol. 1991;1:263–76.PubMedCrossRefGoogle Scholar
  25. 25.
    Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, et al. CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol. 1988;41:1105–16.PubMedCrossRefGoogle Scholar
  26. 26.
    Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;129:S49–73.PubMedCrossRefGoogle Scholar
  27. 27.
    Kavousi M, Leening MJ, Nanchen D, Greenland P, Graham IM, et al. Comparison of application of the ACC/AHA guidelines, adult treatment panel III guidelines, and European Society of Cardiology guidelines for cardiovascular disease prevention in a European cohort. JAMA. 2014;311:1416–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Muntner P, Colantonio LD, Cushman M, Goff DC Jr, Howard G, et al. Validation of the atherosclerotic cardiovascular disease pooled cohort risk equations. JAMA. 2014;311:1406–15.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    DeFilippis AP, Young R, Carrubba CJ, McEvoy JW, Budoff MJ, et al. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann Intern Med. 2015;162:266–75.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006;355:2631–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Brindle P, Beswick A, Fahey T, Ebrahim S. Accuracy and impact of risk assessment in the primary prevention of cardiovascular disease: a systematic review. Heart. 2006;92:1752–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;129:S1–45.PubMedCrossRefGoogle Scholar
  33. 33.
    Thanassoulis G, Vasan RS. Genetic cardiovascular risk prediction: will we get there? Circulation. 2010;122:2323–34.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Arain FA, Kuniyoshi FH, Abdalrhim AD, Miller VM. Sex/gender medicine. The biological basis for personalized care in cardiovascular medicine. Circ J. 2009;73:1774–82.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Regitz-Zagrosek V, Kararigas G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev. 2017;97:1–37.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kling JM, Miller VM, Mulvagh SL. Transitions across a lifetime: unique cardiovascular physiology of women and relationship to cardiovascular disease risk. In: Spangenburg EE, editor. Integrative biology of Women’s health. New York: Springer; 2013. p. 141–56.CrossRefGoogle Scholar
  37. 37.
    Sampson AK, Jennings GL, Chin-Dusting JP. Y are males so difficult to understand?: a case where “X” does not mark the spot. Hypertension. 2012;59:525–31.PubMedCrossRefGoogle Scholar
  38. 38.
    Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, et al. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375:2349–58.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gertler MM, Garn SM, White PD. Young candidates for coronary heart disease. J Am Med Assoc. 1951;147:621–5.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med. 1994;330:1041–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Zdravkovic S, Wienke A, Pedersen NL, Marenberg ME, Yashin AI, et al. Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. J Intern Med. 2002;252:247–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Lloyd-Jones DM, Nam BH, D’Agostino RB Sr, Levy D, Murabito JM, et al. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring. JAMA. 2004;291:2204–11.PubMedCrossRefGoogle Scholar
  43. 43.
    Murabito JM, Pencina MJ, Nam BH, D’Agostino RB Sr, Wang TJ, et al. Sibling cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults. JAMA. 2005;294:3117–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Won HH, Natarajan P, Dobbyn A, Jordan DM, Roussos P, et al. Disproportionate contributions of select genomic compartments and cell types to genetic risk for coronary artery disease. PLoS Genet. 2015;11:e1005622.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Müller C. Xanthomata, hypercholesterolemia, angina pectoris. J Intern Med. 1938;89:75–84.Google Scholar
  46. 46.
    Lehrman MA, Schneider WJ, Sudhof TC, Brown MS, Goldstein JL, et al. Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science. 1985;227:140–6.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Soria LF, Ludwig EH, Clarke HR, Vega GL, Grundy SM, et al. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA. 1989;86:587–91.PubMedCrossRefGoogle Scholar
  49. 49.
    Garcia CK, Wilund K, Arca M, Zuliani G, Fellin R, et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science. 2001;292:1394–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Berge KE, Tian H, Graf GA, Yu L, Grishin NV, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 2000;290:1771–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Musunuru K, Kathiresan S. Genetics of coronary artery disease. Annu Rev Genomics Hum Genet. 2010;11:91–108.PubMedCrossRefGoogle Scholar
  52. 52.
    Risch NJ. Searching for genetic determinants in the new millennium. Nature. 2000;405:847–56.PubMedCrossRefGoogle Scholar
  53. 53.
    Tabor HK, Risch NJ, Myers RM. Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet. 2002;3:391–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434–42.PubMedCrossRefGoogle Scholar
  55. 55.
    McCarthy JJ, Parker A, Salem R, Moliterno DJ, Wang Q, et al. Large scale association analysis for identification of genes underlying premature coronary heart disease: cumulative perspective from analysis of 111 candidate genes. J Med Genet. 2004;41:334–41.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet. 2002;32:650–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Pare G, Serre D, Brisson D, Anand SS, Montpetit A, et al. Genetic analysis of 103 candidate genes for coronary artery disease and associated phenotypes in a founder population reveals a new association between endothelin-1 and high-density lipoprotein cholesterol. Am J Hum Genet. 2007;80:673–82.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Topol EJ, McCarthy J, Gabriel S, Moliterno DJ, Rogers WJ, et al. Single nucleotide polymorphisms in multiple novel thrombospondin genes may be associated with familial premature myocardial infarction. Circulation. 2001;104:2641–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Yamada Y, Matsuo H, Segawa T, Watanabe S, Kato K, et al. Assessment of genetic risk for myocardial infarction. Thromb Haemost. 2006;96:220–7.PubMedGoogle Scholar
  60. 60.
    Yamada Y, Metoki N, Yoshida H, Satoh K, Ichihara S, et al. Genetic risk for ischemic and hemorrhagic stroke. Arterioscler Thromb Vasc Biol. 2006;26:1920–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med. 2002;347:1916–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Silander K, Alanne M, Kristiansson K, Saarela O, Ripatti S, et al. Gender differences in genetic risk profiles for cardiovascular disease. PLoS One. 2008;3:e3615.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    International HapMap C. The international HapMap Project. Nature. 2003;426:789–96.CrossRefGoogle Scholar
  64. 64.
    International HapMap C, Frazer KA, Ballinger DG, Cox DR, Hinds DA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.CrossRefGoogle Scholar
  65. 65.
    Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–53.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–3.PubMedCrossRefGoogle Scholar
  67. 67.
    McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–91.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Myocardial Infarction Genetics C, Kathiresan S, Voight BF, Purcell S, Musunuru K, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41:334–41.CrossRefGoogle Scholar
  69. 69.
    Erdmann J, Grosshennig A, Braund PS, Konig IR, Hengstenberg C, et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet. 2009;41:280–2.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Coronary Artery Disease Genetics C. A genome-wide association study in Europeans and south Asians identifies five new loci for coronary artery disease. Nat Genet. 2011;43:339–44.CrossRefGoogle Scholar
  71. 71.
    Consortium IKC. Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS Genet. 2011;7:e1002260.CrossRefGoogle Scholar
  72. 72.
    Consortium CD, Deloukas P, Kanoni S, Willenborg C, Farrall M, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.CrossRefGoogle Scholar
  73. 73.
    Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Webb TR, Erdmann J, Stirrups KE, Stitziel NO, Masca NG, et al. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69:823–36.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Do R, Stitziel NO, Won HH, Jorgensen AB, Duga S, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature. 2015;518:102–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43:333–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Liu LY, Schaub MA, Sirota M, Butte AJ. Sex differences in disease risk from reported genome-wide association study findings. Hum Genet. 2012;131:353–64.PubMedCrossRefGoogle Scholar
  79. 79.
    Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012;44:981–90.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Taylor KC, Carty CL, Dumitrescu L, Buzkova P, Cole SA, et al. Investigation of gene-by-sex interactions for lipid traits in diverse populations from the population architecture using genomics and epidemiology study. BMC Genet. 2013;14:33.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kavousi M, Bielak LF, Peyser PA. Genetic research and Women’s heart disease: a primer. Curr Atheroscler Rep. 2016;18:67.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Orozco G, Ioannidis JP, Morris A, Zeggini E, Consortium D. Sex-specific differences in effect size estimates at established complex trait loci. Int J Epidemiol. 2012;41:1376–82.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Goodarzynejad H, Boroumand M, Behmanesh M, Ziaee S, Jalali A. The rs5888 single nucleotide polymorphism in scavenger receptor class B type 1 (SCARB1) gene and the risk of premature coronary artery disease: a case-control study. Lipids Health Dis. 2016;15:7.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Hartiala JA, Tang WH, Wang Z, Crow AL, Stewart AF, et al. Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat Commun. 2016;7:10558.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518:187–96.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Wise AL, Gyi L, Manolio TA. eXclusion: toward integrating the X chromosome in genome-wide association analyses. Am J Hum Genet. 2013;92:643–7.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Gao F, Chang D, Biddanda A, Ma L, Guo Y, et al. XWAS: a software toolset for genetic data analysis and association studies of the X chromosome. J Hered. 2015;106:666–71.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Charchar FJ, Tomaszewski M, Padmanabhan S, Lacka B, Upton MN, et al. The Y chromosome effect on blood pressure in two European populations. Hypertension. 2002;39:353–6.PubMedCrossRefGoogle Scholar
  89. 89.
    Ellis JA, Stebbing M, Harrap SB. Association of the human Y chromosome with high blood pressure in the general population. Hypertension. 2000;36:731–3.PubMedCrossRefGoogle Scholar
  90. 90.
    Uehara Y, Shin WS, Watanabe T, Osanai T, Miyazaki M, et al. A hypertensive father, but not hypertensive mother, determines blood pressure in normotensive male offspring through body mass index. J Hum Hypertens. 1998;12:441–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Bray AW, Ballinger SW. Mitochondrial DNA mutations and cardiovascular disease. Curr Opin Cardiol. 2017. https://doi.org/10.1097/HCO.0000000000000383.
  92. 92.
    Assimes TL, Roberts R. Genetics: implications for prevention and Management of Coronary Artery Disease. J Am Coll Cardiol. 2016;68:2797–818.PubMedCrossRefGoogle Scholar
  93. 93.
    Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–76.PubMedCrossRefGoogle Scholar
  94. 94.
    Chatterjee N, Shi J, Garcia-Closas M. Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. 2016;17:392–406.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Tada H, Melander O, Louie JZ, Catanese JJ, Rowland CM, et al. Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur Heart J. 2016;37:561–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, et al. Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med. 2008;358:1240–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Anderson JL, Horne BD, Camp NJ, Muhlestein JB, Hopkins PN, et al. Joint effects of common genetic variants from multiple genes and pathways on the risk of premature coronary artery disease. Am Heart J. 2010;160:250–6. e253.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Qi L, Ma J, Qi Q, Hartiala J, Allayee H, et al. Genetic risk score and risk of myocardial infarction in Hispanics. Circulation. 2011;123:374–80.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K, et al. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet. 2010;376:1393–400.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Thanassoulis G, Peloso GM, Pencina MJ, Hoffmann U, Fox CS, et al. A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: the Framingham heart study. Circ Cardiovasc Genet. 2012;5:113–21.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Paynter NP, Chasman DI, Pare G, Buring JE, Cook NR, et al. Association between a literature-based genetic risk score and cardiovascular events in women. JAMA. 2010;303:631–7.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Tikkanen E, Havulinna AS, Palotie A, Salomaa V, Ripatti S. Genetic risk prediction and a 2-stage risk screening strategy for coronary heart disease. Arterioscler Thromb Vasc Biol. 2013;33:2261–6.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ganna A, Magnusson PK, Pedersen NL, de Faire U, Reilly M, et al. Multilocus genetic risk scores for coronary heart disease prediction. Arterioscler Thromb Vasc Biol. 2013;33:2267–72.PubMedCrossRefGoogle Scholar
  104. 104.
    Hughes MF, Saarela O, Stritzke J, Kee F, Silander K, et al. Genetic markers enhance coronary risk prediction in men: the MORGAM prospective cohorts. PLoS One. 2012;7:e40922.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Weijmans M, de Bakker PI, van der Graaf Y, Asselbergs FW, Algra A, et al. Incremental value of a genetic risk score for the prediction of new vascular events in patients with clinically manifest vascular disease. Atherosclerosis. 2015;239:451–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Mega JL, Stitziel NO, Smith JG, Chasman DI, Caulfield MJ, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials. Lancet. 2015;385:2264–71.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Abraham G, Havulinna AS, Bhalala OG, Byars SG, De Livera AM, et al. Genomic prediction of coronary heart disease. Eur Heart J. 2016;37:3267–78.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Shahid SU, Shabana, Cooper JA, Beaney KE, Li K, et al. Genetic risk analysis of coronary artery disease in Pakistani subjects using a genetic risk score of 21 variants. Atherosclerosis. 2017;258:1–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Joseph PG, Pare G, Asma S, Engert JC, Yusuf S, et al. Impact of a genetic risk score on myocardial infarction risk across different ethnic populations. Can J Cardiol. 2016;32:1440–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Shanker J, Arvind P, Jambunathan S, Nair J, Kakkar V. Genetic analysis of the 9p21.3 CAD risk locus in Asian Indians. Thromb Haemost. 2014;111:960–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Sotos-Prieto M, Baylin A, Campos H, Qi L, Mattei J. Lifestyle cardiovascular risk score, genetic risk score, and myocardial infarction in Hispanic/Latino adults living in Costa Rica. J Am Heart Assoc. 2016;5(12):e004067.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Pasquale LR, Aschard H, Kang JH, Bailey JN, Lindstrom S, et al. Age at natural menopause genetic risk score in relation to age at natural menopause and primary open-angle glaucoma in a US-based sample. Menopause. 2017;24:150–6.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lee H, Oh JY, Sung YA, Chung HW. A genetic risk score is associated with polycystic ovary syndrome-related traits. Hum Reprod. 2016;31:209–15.PubMedCrossRefGoogle Scholar
  114. 114.
    Xia Z, Steele SU, Bakshi A, Clarkson SR, White CC, et al. Assessment of early evidence of multiple sclerosis in a prospective study of asymptomatic high-risk family members. JAMA Neurol. 2017;74:293–300.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Vachon CM, Pankratz VS, Scott CG, Haeberle L, Ziv E, et al. The contributions of breast density and common genetic variation to breast cancer risk. J Natl Cancer Inst. 2015;107:dju397.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Helfand BT, Kearns J, Conran C, Xu J. Clinical validity and utility of genetic risk scores in prostate cancer. Asian J Androl. 2016;18:509–14.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Carayol J, Schellenberg GD, Dombroski B, Genin E, Rousseau F, et al. Autism risk assessment in siblings of affected children using sex-specific genetic scores. Mol Autism. 2011;2:17.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Thornton-Wells TA, Moore JH, Haines JL. Dissecting trait heterogeneity: a comparison of three clustering methods applied to genotypic data. BMC Bioinformatics. 2006;7:204.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, et al. Heart disease and stroke statistics – 2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.PubMedCrossRefGoogle Scholar
  120. 120.
    Leening MJ, Ferket BS, Steyerberg EW, Kavousi M, Deckers JW, et al. Sex differences in lifetime risk and first manifestation of cardiovascular disease: prospective population based cohort study. BMJ. 2014;349:g5992.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Mosca L, Barrett-Connor E, Wenger NK. Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation. 2011;124:2145–54.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bairey Merz CN, Shaw LJ, Reis SE, Bittner V, Kelsey SF, et al. Insights from the NHLBI-sponsored Women's ischemia syndrome evaluation (WISE) study: part II: gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular coronary disease. J Am Coll Cardiol. 2006;47:S21–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Regitz-Zagrosek V, Lehmkuhl E. Heart failure and its treatment in women. Role of hypertension, diabetes, and estrogen. Herz. 2005;30:356–67.PubMedCrossRefGoogle Scholar
  124. 124.
    Salfati E, Nandkeolyar S, Fortmann SP, Sidney S, Hlatky MA, et al. Susceptibility loci for clinical coronary artery disease and subclinical coronary atherosclerosis throughout the life-course. Circ Cardiovasc Genet. 2015;8:803–11.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Assimes TL, Salfati EL, Del Gobbo LC. Leveraging information from genetic risk scores of coronary atherosclerosis. Curr Opin Lipidol. 2017;28:104–12.PubMedCrossRefGoogle Scholar
  126. 126.
    Barrett-Connor E. Sex differences in coronary heart disease. Why are women so superior? The 1995 Ancel keys lecture. Circulation. 1997;95:252–64.PubMedCrossRefGoogle Scholar
  127. 127.
    Jousilahti P, Vartiainen E, Tuomilehto J, Puska P. Sex, age, cardiovascular risk factors, and coronary heart disease: a prospective follow-up study of 14 786 middle-aged men and women in Finland. Circulation. 1999;99:1165–72.PubMedCrossRefGoogle Scholar
  128. 128.
    Pilote L, Dasgupta K, Guru V, Humphries KH, McGrath J, et al. A comprehensive view of sex-specific issues related to cardiovascular disease. CMAJ. 2007;176:S1–44.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, et al. Myocardial infarction and coronary deaths in the World Health Organization MONICA project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation. 1994;90:583–612.PubMedCrossRefGoogle Scholar
  130. 130.
    Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.PubMedCrossRefGoogle Scholar
  131. 131.
    Carroll MD, Lacher DA, Sorlie PD, Cleeman JI, Gordon DJ, et al. Trends in serum lipids and lipoproteins of adults, 1960-2002. JAMA. 2005;294:1773–81.PubMedCrossRefGoogle Scholar
  132. 132.
    Mittendorfer B. Sexual dimorphism in human lipid metabolism. J Nutr. 2005;135:681–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, et al. Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation. 2012;125:e2–e220.PubMedCrossRefGoogle Scholar
  134. 134.
    Townsend EA, Miller VM, Prakash YS. Sex differences and sex steroids in lung health and disease. Endocr Rev. 2012;33:1–47.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Nauser TD, Stites SW. Diagnosis and treatment of pulmonary hypertension. Am Fam Physician. 2001;63:1789–98.PubMedGoogle Scholar
  136. 136.
    Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, et al. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53:944–51.CrossRefPubMedGoogle Scholar
  137. 137.
    Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2017;10Google Scholar
  138. 138.
    Garovic VD, Bailey KR, Boerwinkle E, Hunt SC, Weder AB, et al. Hypertension in pregnancy as a risk factor for cardiovascular disease later in life. J Hypertens. 2010;28:826–33.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Funai EF, Friedlander Y, Paltiel O, Tiram E, Xue X, et al. Long-term mortality after preeclampsia. Epidemiology. 2005;16:206–15.PubMedCrossRefGoogle Scholar
  140. 140.
    Brown DW, Dueker N, Jamieson DJ, Cole JW, Wozniak MA, et al. Preeclampsia and the risk of ischemic stroke among young women: results from the stroke prevention in young women study. Stroke. 2006;37:1055–9.PubMedCrossRefGoogle Scholar
  141. 141.
    Vikse BE, Irgens LM, Leivestad T, Skjaerven R, Iversen BM. Preeclampsia and the risk of end-stage renal disease. N Engl J Med. 2008;359:800–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Kuklina EV, Ayala C, Callaghan WM. Hypertensive disorders and severe obstetric morbidity in the United States. Obstet Gynecol. 2009;113:1299–306.PubMedCrossRefGoogle Scholar
  143. 143.
    Ostadal B, Ostadal P. Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br J Pharmacol. 2014;171:541–54.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Nwankwo TYS, Burt V, Gu Q. Hypertension among adults in the United States: National Health and nutrition examination survey, 2011–2012. NCHS Data Brief. 2013;133:1–8.Google Scholar
  145. 145.
    Legro RS. Polycystic ovary syndrome and cardiovascular disease: a premature association? Endocr Rev. 2003;24:302–12.PubMedCrossRefGoogle Scholar
  146. 146.
    Vryonidou A, Papatheodorou A, Tavridou A, Terzi T, Loi V, et al. Association of hyperandrogenemic and metabolic phenotype with carotid intima-media thickness in young women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2005;90:2740–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Puzianowska-Kuznicka M. ESR1 in myocardial infarction. Clin Chim Acta. 2012;413:81–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Sudhir K, Chou TM, Chatterjee K, Smith EP, Williams TC, et al. Premature coronary artery disease associated with a disruptive mutation in the estrogen receptor gene in a man. Circulation. 1997;96:3774–7.CrossRefPubMedGoogle Scholar
  149. 149.
    Shaw LJ, Bugiardini R, Merz CN. Women and ischemic heart disease: evolving knowledge. J Am Coll Cardiol. 2009;54:1561–75.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Melbourne Integrative Genomics, School of BiosciencesThe University of MelbourneParkvilleAustralia
  2. 2.Department of PathologyThe University of MelbourneParkvilleAustralia
  3. 3.Systems Genomics LabBaker Heart and Diabetes InstituteMelbourneAustralia

Personalised recommendations