Cardiovascular Implications of Diabetes, Metabolic Syndrome, Thyroid Disease, and Cardio-Oncology in Women

  • Marijana Tadic
  • Cesare Cuspidi
  • Dragan Vasic
  • Peter L. M. Kerkhof
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)


Cardiovascular disease may be associated with several comorbidities, including diabetes mellitus, thyroid disorders, and the metabolic syndrome, which are predominantly observed in women and often starting at particular ages. In addition, common treatment options for carcinomas frequently seen in women may induce serious cardiotoxic effects. We review the scope of the problem, the pathophysiologic mechanisms involved, as well as the resulting abnormalities regarding cardiac structure and function as observed by using imaging techniques.


Comorbidities in women with heart disease Menopause Estrogen Diabetes mellitus Thyroid disease Metabolic syndrome Cardiac remodeling Cardio-oncology Heart failure Left ventricle Right ventricle Obesity Review 


  1. 1.
    Lipscombe LL, Hux JE. Trends in diabetes prevalence, incidence, and mortality in Ontario, Canada 1995–2005: a population-based study. Lancet. 2007;369:750–6.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    International Diabetes Federation. IDF diabetes atlas. 6th ed. Brussels: International Diabetes Federation; 2013.Google Scholar
  3. 3.
    Logue J, Walker JJ, Colhoun HM, et al. Scottish diabetes research network epidemiology group. Do men develop type 2 diabetes at lower body mass indices than women? Diabetologia. 2011;54:3003–6.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Paul S, Thomas G, Majeed A, et al. Women develop type 2 diabetes at a higher body mass index than men. Diabetologia. 2012;55:1556–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.CrossRefGoogle Scholar
  6. 6.
    Sattar N. Gender aspects in type 2 diabetes mellitus and cardiometabolic risk. Best Pract Res Clin Endocrinol Metab. 2013;27(4):501–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Tadic M, Ilic S, Cuspidi C, Stojcevski B, Ivanovic B, Bukarica L, Jozika L, Celic V. Left ventricular mechanics in untreated normotensive patients with type 2 diabetes mellitus: a two- and three-dimensional speckle tracking study. Echocardiography. 2015;32(6):947–55.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Tadic M, Ilic S, Cuspidi C, Kocijancic V, Celic V. Prediabetes, diabetes and left heart deformation. Rev Esp Cardiol (Engl Ed). 2014;67(12):1062–4.CrossRefGoogle Scholar
  9. 9.
    Jørgensen PG, Jensen MT, Mogelvang R, Fritz-Hansen T, Galatius S, Biering-Sørensen T, Storgaard H, Vilsbøll T, Rossing P, Jensen JS. Impact of type 2 diabetes and duration of type 2 diabetes on cardiac structure and function. Int J Cardiol. 2016;221:114–21.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Leung M, Wong VW, Hudson M, Leung DY. Impact of improved glycemic control on cardiac function in type 2 diabetes mellitus. Circ Cardiovasc Imaging. 2016;9(3):e003643.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Roos CJ, Scholte AJ, Kharagjitsingh AV, Bax JJ, Delgado V. Changes in multidirectional LV strain in asymptomatic patients with type 2 diabetes mellitus: a 2-year follow-up study. Eur Heart J Cardiovasc Imaging. 2014;15(1):41–7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Tadic M, Celic V, Cuspidi C, Ilic S, Pencic B, Radojkovic J, Ivanovic B, Stanisavljevic D, Kocabay G, Marjanovic T. Right heart mechanics in untreated normotensive patients with prediabetes and type 2 diabetes mellitus: a two- and three-dimensional echocardiographic study. J Am Soc Echocardiogr. 2015;28(3):317–27.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Enomoto M, Ishizu T, Seo Y, Yamamoto M, Suzuki H, Shimano H, Kawakami Y, Aonuma K. Subendocardial systolic dysfunction in asymptomatic normotensive diabetic patient. Circ J. 2015;79(8):1749–55.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Vukomanovic V, Tadic M, Suzic-Lazic J, Kocijancic V, Celic V. The relationship between heart rate variability and left ventricular layer-specific deformation in uncomplicated diabetic patients. Int J Cardiovasc Imaging. 2017;33(4):481–90.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Tadic M, Vukomanovic V, Cuspidi C, Suzic-Lazic J, Pencic-Popovic B, Radojkovic J, Babic R, Celic V. The relationship between right ventricular deformation and heart rate variability in asymptomatic diabetic patients. J Diabetes Complicat. 2017;31(7):1152–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Dalen H, Thorstensen A, Romundstad PR, Aase SA, Stoylen A, Vatten LJ. Cardiovascular risk factors and systolic and diastolic cardiac function: a tissue Doppler and speckle tracking echocardiographic study. J Am Soc Echocardiogr. 2011;24(3):322–32.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Tadic MV, Ivanovic BA, Petrovic M, Celic V, Neskovic A. Gender influence on left ventricular structure and function in metabolic syndrome. Are women at greater risk? J Clin Ultrasound. 2013;41(9):538–45.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Tadic MV, Ivanovic BA, Petrovic M. Is Gender responsible for everything? The relationship between sex and right ventricular remodeling in metabolic syndrome. Echocardiography. 2013;30(7):778–85.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979;241:2035–8.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Kiencke S, Handschin R, von Dahlen R, Muser J, Brunner-Larocca HP, Schumann J, Felix B, Berneis K, Rickenbacher P. Pre-clinical diabetic cardiomyopathy: prevalence clinical diabetic cardiomyopathy: prevalence, clinical diabetic cardiomyopathy: prevalence, screening, and outcome. Eur J Heart Fail. 2010;12(9):951–7.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kuznetsova T, Cauwenberghs N, Knez J, Yang WY, Herbots L, D’hooge J, Haddad F, Thijs L, Voigt JU, Staessen JA. Additive prognostic value of left ventricular systolic dysfunction in a population-based cohort. Circ Cardiovasc Imaging. 2016;9(7):e004661.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Young ME, Mcnulty P, Taegtmeyer H. Adaptation and maladaptation of the heart in diabetes: part II potential mechanisms. Circulation. 2002;105:1861–70.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Factor SM, Minase T, Sonnenblick EH. Clinical and morphological features of human hypertensive-diabetic cardiomyopathy. Am Heart J. 1980;99:446–58.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kalil GZ, Haynes WG. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications. Hypertens Res. 2012;35(1):4–16.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Santilli F, D’Ardes D, Guagnano MT, Davi G. Metabolic syndrome: sex-related cardiovascular risk and therapeutic approach. Curr Med Chem 2017 Jul 10. [Epub ahead of print].Google Scholar
  26. 26.
    Alberti KG, Zimmet PZ. Definition, Diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15:539–53.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Balkau B, Charles MA. Comment on the provisional report from the WHO consultation. European Group for the Study of insulin resistance (EGIR). Diabet Med. 1999;16:442–3.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP). Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285:2486–97.CrossRefGoogle Scholar
  29. 29.
    Alberti KG, Zimmet P, Shaw J. The IDF epidemiology task force consensus group. The metabolic syndrome: a new worldwide definition. Lancet. 2005;366:1059–62.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Einhorn D, Reaven GM, Cobin RH, Ford E, Ganda OP, Handelsman Y, et al. American College of Endocrinology position statement on the insulin resistance syndrome. Endocr Pract. 2003;9:237–52.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, lung and blood institute scientific statement. Circulation. 2005;112:2735–52.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Phillips GB, Jing T, Heymsfield SB. Does insulin resistance, visceral adiposity, or a sex hormone alteration underlie the metabolic syndrome? Studies in women. Metabolism. 2008;57(6):838–44.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kozakowski J, Gietka-Czernel M, Leszczyńska D, Majos A. Obesity in menopause – our negligence or an unfortunate inevitability? Prz Menopauzalny. 2017;16(2):61–5.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Pradhan AD. Sex differences in the metabolic syndrome: implications for cardiovascular health in women. Clin Chem. 2014;60:44–52.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Barrett-Connor EL, Cohn BA, Wingard DL, Edelstein SL. Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo study. JAMA. 1991;265(5):627–31.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Peters SA, Huxley RR, Woodward M. Diabetes as risk factor for incident coronary heart disease in women compared with men: a systematic review and meta-analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia. 2014;57(8):1542–51.PubMedCrossRefGoogle Scholar
  37. 37.
    McNeill AM, Rosamond WD, Girman CJ, Golden SH, Schmidt MI, East HE, Ballantyne CM, Heiss G. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care. 2005;28(2):385–90.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Dekker JM, Girman C, Rhodes T, Nijpels G, Stehouwer CD, Bouter LM, Heine RJ. Metabolic syndrome and 10-year cardiovascular disease risk in the Hoorn study. Circulation. 2005;112(5):666–73.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Hu G, Qiao Q, Tuomilehto J, Balkau B, Borch-Johnsen K, Pyorala K, DECODE Study Group. Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch Intern Med. 2004;164(10):1066–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Ivanovic BA, Tadic MV, Simic DV. Are all criteria of metabolic syndrome equally harmful? Acta Cardiol. 2011;66(2):189–96.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Tadic M, Ivanovic B, Grozdic I. Metabolic syndrome impacts the right ventricle: true or false? Echocardiography. 2011;28(5):530–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Aijaz B, Ammar KA, Lopez-Jimenez F, Redfield MM, Jacobsen SJ, Rodeheffer RJ. Abnormal cardiac structure and function in the metabolic syndrome: a population-based study. Mayo Clin Proc. 2008;83(12):1350–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Cuspidi C, Valerio C, Sala C, Negri F, Esposito A, Masaidi M, Giudici V, Zanchetti A, Mancia G. Metabolic syndrome and biventricular hypertrophy in essential hypertension. J Hum Hypertens. 2009;23(3):168–75.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Tadic M, Cuspidi C, Majstorovic A, Pencic B, Backovic S, Ivanovic B, Scepanovic R, Martinov J, Kocijancic V, Celic V. Does the metabolic syndrome impact left-ventricular mechanics? A two-dimensional speckle tracking study. J Hypertens. 2014;32(9):1870–8.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Tadic M, Cuspidi C, Sljivic A, Andric A, Ivanovic B, Scepanovic R, Ilic I, Jozika L, Marjanovic T, Celic V. Effects of the metabolic syndrome on right heart mechanics and function. Can J Cardiol. 2014;30(3):325–31.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Schillaci G, Pirro M, Vaudo G, Mannarino MR, Savarese G, Pucci G, Franklin SS, Mannarino E. Metabolic syndrome is associated with aortic stiffness in untreated essential hypertension. Hypertension. 2005;45:1078–82.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Martin SS, Daya N, Lutsey PL, Matsushita K, Fretz A, McEvoy JW, Blumenthal RS, Coresh J, Greenland P, Kottgen A, Selvin E. Thyroid function, cardiovascular risk factors, and incident atherosclerotic cardiovascular disease: the Atherosclerosis Risk in Communities (ARIC) study. J Clin Endocrinol Metab 2017 Jun 12. [Epub ahead of print].Google Scholar
  48. 48.
    Ning Y, Cheng YJ, Liu LJ, Sara JD, Cao ZY, Zheng WP, Zhang TS, Han HJ, Yang ZY, Zhang Y, Wang FL, Pan RY, Huang JL, Wu LL, Zhang M, Wei YX. What is the association of hypothyroidism with risks of cardiovascular events and mortality? A meta-analysis of 55 cohort studies involving 1,898,314 participants. BMC Med. 2017;15(1):21.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Journy NMY, Bernier MO, Doody MM, Alexander BH, Linet MS, Kitahara CM. Hyperthyroidism, Hypothyroidism, and cause-specific mortality in a large cohort of women. Thyroid. 2017;27(8):1001–10.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Dekkers OM, Horváth-Puhó E, Cannegieter SC, Vandenbroucke JP, Sørensen HT, Jørgensen JO. Acute cardiovascular events and all-cause mortality in patients with hyperthyroidism: a population-based cohort study. Eur J Endocrinol. 2017;176(1):1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Fazio S, Palmieri EA, Lombardi G, Biondi B. Effects of thyroid hormone on the cardiovascular system. Recent Prog Horm Res. 2004;59:31–50.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Vargas-Uricoechea H, Bonelo-Perdomo A. Thyroid dysfunction and heart failure: mechanisms and associations. Curr Heart Fail Rep. 2017;14(1):48–58.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Vitale G, Galderisi M, Lupoli GA, Celentano A, Pietropaolo I, Parenti N, De Divitiis O, Lupoli G. Left ventricular myocardial impairment in subclinical hypothyroidism assessed by a new ultrasound tool: pulsed tissue Doppler. J Clin Endocrinol Metab. 2002;87(9):4350–5.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Arinc H, Gunduz H, Tamer A, Seyfeli E, Kanat M, Ozhan H, Akdemir R, Uyan C. Tissue Doppler echocardiography in evaluation of cardiac effects of subclinical hypothyroidism. Int J Cardiovasc Imaging. 2006;22(2):177–86.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Martins RM, Fonseca RH, Duarte MM, Reuters VS, Ferreira MM, Almeida C, Buescu A, Teixeira Pde F, Vaisman M. Impact of subclinical hypothyroidism treatment in systolic and diastolic cardiac function. Arq Bras Endocrinol Metabol. 2011;55(7):460–7.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Meena CL, Meena RD, Nawal R, Meena VK, Bharti A, Meena LP. Assessment of left ventricular diastolic dysfunction in sub-clinical hypothyroidism. Acta Inform Med. 2012;20(4):218–20.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Tadic M, Ilic S, Kostic N, Caparevic Z, Celic V. Subclinical hypothyroidism and left ventricular mechanics: a three-dimensional speckle tracking study. J Clin Endocrinol Metab. 2014;99(1):307–14.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Monzani F, Di Bello V, Caraccio N, Bertini A, Giorgi D, Giusti C, Ferrannini E. Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: a double blind, placebo-controlled study. J Clin Endocrinol Metab. 2001;86(3):1110–5.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Jagdish A, Singh H, Batra A, Siwach SB, Kumar R, Gupta R. An echocardiographic study on the effect of levothyroxine therapy on cardiac function and structure in hypothyroidism. JIACM. 2009;10(1–2):27–31.Google Scholar
  60. 60.
    Tiryakioglu SK, Tiryakioglu O, Ari H, Basel MC, Ozkan H, Bozat T. Left ventricular longitudinal myocardial function in overt hypothyroidism: a tissue Doppler echocardiographic study. Echocardiography. 2010 May;27(5):505–11.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tadic M, Ilic S, Celic V. Right ventricular and right atrial function and deformation in patients with subclinical hypothyroidism: a two- and three-dimensional echocardiographic study. Eur J Endocrinol. 2013;170(1):77–85.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Turhan S, Tulunay C, Ozduman Cin M, Gursoy A, Kilickap M, Dincer I, Candemir B, Gullu S, Erol C. Effects of thyroxine therapy on right ventricular systolic and diastolic function in patients with subclinical hypothyroidism: a study by pulsed wave tissue Doppler imaging. J Clin Endocrinol Metab. 2006 Sep;91(9):3490–3.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Oner FA, Yurdakul S, Oner E, Uzum AK, Erguney M. Evaluation of the effect of L-thyroxin therapy on cardiac functions by using novel tissue Doppler-derived indices in patients with subclinical hypothyroidism. Acta Cardiol. 2011 Feb;66(1):47–55.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Oner FA, Yurdakul S, Oner E, Arslantaş MK, Usta M, Ergüney M. Evaluation of ventricular functions using tissue Doppler echocardiography in patients with subclinical hypothyroidism. Turk Kardiyol Dern Ars. 2011 Mar;39(2):129–36.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kosar F, Sahin I, Turan N, Topal E, Aksoy Y, Taskapan C. Evaluation of right and left ventricular function using pulsed-wave tissue Doppler echocardiography in patients with subclinical hypothyroidism. J Endocrinol Investig. 2005 Sep;28(8):704–10.CrossRefGoogle Scholar
  66. 66.
    Arinc H, Gunduz H, Tamer A, Seyfeli E, Kanat M, Ozhan H, Akdemir R, Celebi H, Uyan C. Evaluation of right ventricular function in patients with thyroid dysfunction. Cardiology. 2006;105(2):89–94.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ripoli A, Pingitore A, Favilli B, Bottoni A, Turchi S, Osman NF, De Marchi D, Lombardi M, L’Abbate A, Iervasi G. Does subclinical hypothyroidism affect cardiac pump performance? Evidence from a magnetic resonance imaging study. J Am Coll Cardiol. 2005;45(3):439–45.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kosar F, Sahin I, Aksoy Y, Uzer E, Turan N. Usefulness of pulsed-wave tissue Doppler echocardiography for the assessment of the left and right ventricular function in patients with clinical hypothyroidism. Echocardiography. 2006;23(6):471–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Biondi B, Palmieri EA, Klain M, Schlumberger M, Filetti S, Lombardi G. Subclinical hyperthyroidism: clinical features and treatment options. Eur J Endocrinol. 2005;152:1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Marcisz C, Jonderko G, Wróblewski T, Kurzawska G, Mazur F. Left ventricular mass in patients with hyperthyroidism. Med Sci Monit. 2006;12(11):CR481–6.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Yue WS, Chong BH, Zhang XH, Liao SY, Jim MH, Kung AW, Tse HF, Siu CW. Hyperthyroidism-induced left ventricular diastolic dysfunction: implication in hyperthyroidism-related heart failure. Clin Endocrinol. 2011;74(5):636–43.CrossRefGoogle Scholar
  72. 72.
    Mark PD, Andreassen M, Petersen CL, Kjaer A, Faber J. Treatment of subclinical hyperthyroidism: effect on left ventricular mass and function of the heart using magnetic resonance imaging technique. Endocr Connect. 2015;4(1):37–42.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Tadic M, Ilic S, Cuspidi C, Marjanovic T, Celic V. Subclinical hyperthyroidism impacts left ventricular deformation: 2D and 3D echocardiographic study. Scand Cardiovasc J. 2015;49(2):74–81.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Abdulrahman RM, Delgado V, Ng AC, Ewe SH, Bertini M, Holman ER, et al. Abnormal cardiac contractility in long-term exogenous subclinical hyperthyroid patients as demonstrated by two-dimensional echocardiography speckle tracking imaging. Eur J Endocrinol. 2010;163:435–41.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Abdulrahman RM, Delgado V, Hoftijzer HC, Ng AC, Ewe SH, Marsan NA, et al. Both exogenous subclinical hyperthyroidism and short-term overt hypothyroidism affect myocardial strain in patients with differentiated thyroid carcinoma. Thyroid. 2011;21:471–6.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Tadic M, Celic V, Cuspidi C, Ilic S, Zivanovic V, Marjanovic T. How does subclinical hyperthyroidism affect right heart function and mechanics? J Ultrasound Med. 2016;35(2):287–95.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Arinc H, Gunduz H, Tamer A, Seyfeli E, Kanat M, Ozhan H, et al. Evaluation of right ventricular function in patients with thyroid dysfunction. Cardiology. 2006;105(2):89–94.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Nacar AB, Acar G, Yorgun H, Akçay A, Özkaya M, Canpolat U, et al. The effect of antithyroid treatment on atrial conduction times in patients with subclinical hyperthyroidism. Echocardiography. 2012;29(8):950–5.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Teasdale SL, Inder WJ, Stowasser M, Stanton T. Hyperdynamic right heart function in graves’ hyperthyroidism measured by echocardiography normalises on restoration of euthyroidism. Heart Lung Circ. 2017;26(6):580–5.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Zuhur SS, Baykiz D, Kara SP, Sahin E, Kuzu I, Elbuken G. Relationship among pulmonary hypertension, autoimmunity, thyroid hormones and dyspnea in patients with hyperthyroidism. Am J Med Sci. 2017;353(4):374–80.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    O’Hare M, Sharma A, Murphy K, Mookadam F, Lee H. Cardio-oncology Part I: chemotherapy and cardiovascular toxicity. Expert Rev Cardiovasc Ther. 2015;13(5):511–8.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Coleman MP, Forman D, Bryant H, et al. Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995-2007 (the international Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet. 2011;377:127–38.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Smith BD, Smith GL, Hurria A, Hortobagyi GN, Buchholz TA. Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol. 2009;27(17):2758–65.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Moudgil R, Yeh ET. Mechanisms of cardiotoxicity of cancer chemotherapeutic agents: cardiomyopathy and beyond. Can J Cardiol. 2016;32(7):863–70.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Tsukamoto O, Kitakaze M. Radiation-induced HFpEF model as a potential tool for the exploration of novel therapeutic targets. Am J Physiol Heart Circ Physiol. 2017;313(2):H323–5.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2009;59:225–49.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Seemann I, Gabriels K, Visser NL, Hoving S, te Poele JA, Pol JF, Gijbels MJ, Janssen BJ, van Leeuwen FW, Daemen MJ, Heeneman S, Stewart FA. Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature. Radiother Oncol. 2012;103:143–50.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Saiki H, Petersen IA, Scott CG, Bailey KR, Dunlay SM, Finley RR, Ruddy KJ, Yan E, Redfield MM. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation. 2017;135:1388–96.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Abdel-Qadir H, Austin PC, Lee DS, Amir E, Tu JV, Thavendiranathan P, Fung K, Anderson GM. A population-based study of cardiovascular mortality following early-stage breast cancer. JAMA Cardiol. 2017;2:88–93.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Paulus WJ, Tschöpe C. A Novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Hamdani N, Franssen C, Lourenço A, Falcão-Pires I, Fontoura D, Leite S, Plettig L, López B, Ottenheijm CA, Becher PM, González A, Tschöpe C, Díez J, Linke WA, Leite-Moreira AF, Paulus WJ. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail. 2013;6:1239–49.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Vejpongsa P, Yeh ET. Topoisomerase 2β: a promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin Pharmacol Ther. 2014;95(1):45–52.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y, Peterson KL, Chen J, Kahn R, Condorelli G, Ross J Jr, Chien KR, Lee KF. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med. 2002;8(5):459–65.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Piotrowski G, Gawor R, Stasiak A, Gawor Z, Potemski P, Banach M. Cardiac complications associated with trastuzumab in the setting of adjuvant chemotherapy for breast cancer overexpressing human epidermal growth factor receptor type 2 – a prospective study. Arch Med Sci. 2012;8(2):227–35.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Nakano S, Takahashi M, Kimura F, Senoo T, Saeki T, Ueda S, Tanno J, Senbonmatsu T, Kasai T, Nishimura S. Cardiac magnetic resonance imaging-based myocardial strain study for evaluation of cardiotoxicity in breast cancer patients treated with trastuzumab: a pilot study to evaluate the feasibility of the method. Cardiol J. 2016;23(3):270–80.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Grover S, Leong DP, Chakrabarty A, Joerg L, Kotasek D, Cheong K, Joshi R, Joseph MX, DePasquale C, Koczwara B, Selvanayagam JB. Left and right ventricular effects of anthracycline and trastuzumab chemotherapy: a prospective study using novel cardiac imaging and biochemical markers. Int J Cardiol. 2013;168(6):5465–7.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Fei HW, Ali MT, Tan TC, Cheng KH, Salama L, Hua L, Zeng X, Halpern EF, Taghian A, MacDonald SM, Scherrer-Crosbie M. Left ventricular global longitudinal strain in HER-2+ breast cancer patients with anthracyclines and trastuzumab who develop cardiotoxicity is associated with subsequent recovery of left ventricular ejection fraction. Echocardiography. 2016;33(4):519–26.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Guerra F, Marchesini M, Contadini D, Menditto A, Morelli M, Piccolo E, Battelli N, Pistelli M, Berardi R, Cascinu S, Capucci A. Speckle-tracking global longitudinal strain as an early predictor of cardiotoxicity in breast carcinoma. Support Care Cancer. 2016;24(7):3139–45.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Tan TC, Bouras S, Sawaya H, Sebag IA, Cohen V, Picard MH, Passeri J, Kuter I, Scherrer-Crosbie M. Time trends of left ventricular ejection fraction and myocardial deformation indices in a cohort of women with breast cancer treated with anthracyclines, taxanes, and trastuzumab. J Am Soc Echocardiogr. 2015;28(5):509–14.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Bergamini C, Torelli F, Ghiselli L, Rossi A, Trevisani L, Vinco G, et al. Left ventricular end-diastolic volume as early indicator of trastuzumab-related cardiotoxicity in HER2+ breast cancer patients: results from a single-center retrospective study. Minerva Cardioangiol. 2017;65:278–87.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Dercle L, Giraudmaillet T, Pascal P, Lairez O, Chisin R, Marachet MA, Ouali M, Rousseau H, Bastié D, Berry I. Is TOMPOOL (gated blood-pool SPECT processing software) accurate to diagnose right and left ventricular dysfunction in a clinical setting? J Nucl Cardiol. 2014;21(5):1011–22.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Cottin Y, Touzery C, Coudert B, Richebourg S, Cohen M, Toubeau M, Louis P, Wolf JE, Brunotte F. Diastolic or systolic left and right ventricular impairment at moderate doses of anthracycline? A 1-year follow-up study of women. Eur J Nucl Med. 1996;23(5):511–6.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Lange SA, Ebner B, Wess A, Kögel M, Gajda M, Hitschold T, Jung J. Echocardiography signs of early cardiac impairment in patients with breast cancer and trastuzumab therapy. Clin Res Cardiol. 2012;101(6):415–26.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Boczar KE, Aseyev O, Sulpher J, Johnson C, Burwash IG, Turek M, Dent S, Dwivedi G. Right heart function deteriorates in breast cancer patients undergoing anthracycline-based chemotherapy. Echo Res Pract. 2016;3(3):79–84.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kılıçaslan B, Özdoğan Ö, Demir Pişkin G, Kahya Eren N, Dursun H. Echocardiographic signs of right ventricle changes after Trastuzumab treatment in breast cancer patients with erb-2 overexpression. Anatol J Cardiol. 2015;15(2):143–8.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Chang WT, Shih JY, Feng YH, Chiang CY, Kuo YH, Chen WY, Wu HC, Cheng JT, Wang JJ, Chen ZC. The early predictive value of right ventricular strain in epirubicin-induced cardiotoxicity in patients with breast cancer. Acta Cardiol Sin. 2016;32(5):550–9.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Bonsignore A, Warburton D. The mechanisms responsible for exercise intolerance in early-stage breast cancer: what role does chemotherapy play? Hong Kong Physiother J. 2013;31:2–11.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiology, Charité-University-Medicine BerlinBerlinGermany
  2. 2.University of Milan-Bicocca and Istituto Auxologico Italiano, Clinical Research UnitMedaItaly
  3. 3.Clinic of Vascular and Endovascular Surgery, Clinical Centre of SerbiaBelgradeSerbia
  4. 4.Department of Radiology and Nuclear Medicine, Amsterdam Cardiovascular SciencesVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations