Advertisement

Cardiovascular Sequels During and After Preeclampsia

  • Nina D. Paauw
  • A. Titia Lely
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)

Abstract

Preeclampsia is a pregnancy-specific disorder complicating 2%–8% of pregnancies worldwide and characterized by de novo development of hypertension and proteinuria. Current understanding of the pathophysiology of preeclampsia is limited. A main feature is disrupted spiral artery remodeling in the placenta, which restricts the blood flow to the placenta, which in turn leads to decreased uteroplacental perfusion. Impaired blood flow through the placenta might result in fetal growth restriction and secretion of several factors by the placenta—mainly pro-inflammatory cytokines and anti-angiogenic factors—which spread into the maternal circulation, leading to endothelial dysfunction, which subsequently results in disrupted maternal hemodynamics. To date, no treatment options are available apart from termination of pregnancy. Despite normalization of the maternal vascular disturbances after birth, it has become apparent that formerly preeclamptic women experience an increased risk to develop cardiovascular and kidney disease later in life. One well-accepted concept is that the development of preeclampsia is an indicator of maternal susceptibility to develop future cardiovascular conditions, although the increased risk might also be the result of organ damage caused during preeclampsia. Given the associations between preeclampsia and long-term complications, preeclampsia is acknowledged as woman-specific risk factor for cardiovascular disease. Current research focuses on finding effective screening and prevention strategies for the reduction of cardiovascular disease in women with a history of preeclampsia.

Keywords

Preeclampsia Gestational hypertension Maternal hemodynamics Uteroplacental perfusion Placentation Placental dysfunction Syncytiotrophoblast Pro-inflammatory cytokines Anti-angiogenic factor s-Flt1 Endoglin Renin-angiotensin aldosterone system Fetal growth restriction Renal function 

References

  1. 1.
    Hernandez-Diaz S, Toh S, Cnattingius S. Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study. BMJ. 2009;338:b2255.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365(9461):785–99.PubMedCrossRefGoogle Scholar
  3. 3.
    American College of Obstetricians and Gynecologists, Task force Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31.Google Scholar
  4. 4.
    Tranquilli AL, Dekker G, Magee L, et al. The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP. Pregnancy Hypertens. 2014;4(2):97–104.PubMedCrossRefGoogle Scholar
  5. 5.
    Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens pregnancy. 2001;20(1):IX–XIV.PubMedCrossRefGoogle Scholar
  6. 6.
    Schaap TP, Knight M, Zwart JJ, et al. Eclampsia, a comparison within the International Network of Obstetric Survey Systems. BJOG. 2014;121(12):1521–8.PubMedCrossRefGoogle Scholar
  7. 7.
    A review of maternal deaths in South Africa during 1998. National Committee on Confidential Enquiries into Maternal Deaths. S Afr Med J. 2000;90(4):367–73.Google Scholar
  8. 8.
    Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol (New York, NY 1989). 2010;63(6):534–43.CrossRefGoogle Scholar
  9. 9.
    Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27(9–10):939–58.PubMedCrossRefGoogle Scholar
  10. 10.
    Burton GJ, Woods AW, Jauniaux E, Kingdom JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–82.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lau SY, Barrett CJ, Guild S-J, Chamley LW. Necrotic trophoblast debris increases blood pressure during pregnancy. J Reprod Immunol. 2013;97(2):175–82.PubMedCrossRefGoogle Scholar
  12. 12.
    Schobel HP, Fischer T, Heuszer K, Geiger H, Schmieder RE. Preeclampsia—a state of sympathetic overactivity. N Engl J Med. 1996;335(20):1480–5.PubMedCrossRefGoogle Scholar
  13. 13.
    van Beck E, Peeters LL. Pathogenesis of preeclampsia: a comprehensive model. Obstet Gynecol Surv. 1998;53(4):233–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Fischer T, Schobel HP, Frank H, Andreae M, Schneider KTM, Heusser K. Pregnancy-induced sympathetic overactivity: a precursor of preeclampsia. Eur J Clin Invest. 2004;34(6):443–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Cui Y, Wang W, Dong N, et al. Role of corin in trophoblast invasion and uterine spiral artery remodelling in pregnancy. Nature. 2012;484(7393):246–50.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhou Y, Wu Q. Role of corin and atrial natriuretic peptide in preeclampsia. Placenta. 2013;34(2):89–94.PubMedCrossRefGoogle Scholar
  17. 17.
    Raymond D, Peterson E. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv. 2011;66(8):497–506.PubMedCrossRefGoogle Scholar
  18. 18.
    Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308(5728):1592–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Falco ML, Sivanathan J, Laoreti A, Thilaganathan B, Khalil A. Placental histopathology associated with pre-eclampsia: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;50(3):295–301.PubMedCrossRefGoogle Scholar
  20. 20.
    Sibai BM, Lindheimer M, Hauth J, et al. Risk factors for preeclampsia, abruptio placentae, and adverse neonatal outcomes among women with chronic hypertension. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med. 1998;339(10):667–71.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Verdonk K, Visser W, Van Den Meiracker AH, Danser AHJ. The renin-angiotensin-aldosterone system in pre-eclampsia: the delicate balance between good and bad. Clin Sci (Lond). 2014;126(8):537–44.CrossRefGoogle Scholar
  22. 22.
    Khalil A, Jauniaux E, Cooper D, Harrington K. Pulse wave analysis in normal pregnancy: a prospective longitudinal study. PLoS One. 2009;4(7):e6134.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Boeldt DS, Yi FX, Bird IM. eNOS activation and NO function: pregnancy adaptive programming of capacitative entry responses alters nitric oxide (NO) output in vascular endothelium—new insights into eNOS regulation through adaptive cell signaling. J Endocrinol. 2011;210(3):243–58.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chaddha V, Viero S, Huppertz B, Kingdom J. Developmental biology of the placenta and the origins of placental insufficiency. Semin Fetal Neonatal Med. 2004;9(5):357–69.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Gant NF, Chand S, Whalley PJ, MacDonald PC. The nature of pressor responsiveness to angiotensin II in human pregnancy. Obstet Gynecol. 1974;43(6):854.PubMedPubMedCentralGoogle Scholar
  26. 26.
    van der Graaf AM, Toering TJ, Faas MM, Lely AT. From preeclampsia to renal disease: a role of angiogenic factors and the renin-angiotensin aldosterone system? Nephrol Dial Transplant [Internet]. 2012 [cited 2014 Oct 16];27(Suppl 3):iii51–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23115142
  27. 27.
    Johal T, Lees CC, Everett TR, Wilkinson IB. The nitric oxide pathway and possible therapeutic options in pre-eclampsia. Br J Clin Pharmacol. 2014;78(2):244–57.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    López-Jaramillo P, Arenas WD, García RG, Rincon MY, López M. The role of the L-arginine-nitric oxide pathway in preeclampsia. Ther Adv Cardiovasc Dis [Internet]. 2008;2(4):261–75. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L352219675 CrossRefGoogle Scholar
  29. 29.
    Friedman SA. Preeclampsia: a review of the role of prostaglandins. Obstet Gynecol. 1988;71(1):122–37.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Valensise H, Novelli GP, Vasapollo B, et al. Maternal diastolic dysfunction and left ventricular geometry in gestational hypertension. Hypertens (Dallas, Tex 1979). 2001;37(5):1209–15.CrossRefGoogle Scholar
  31. 31.
    Melchiorre K, Sutherland GR, Baltabaeva A, Liberati M, Thilaganathan B. Maternal cardiac dysfunction and remodeling in women with preeclampsia at term. Hypertens (Dallas, Tex 1979). 2011;57(1):85–93.CrossRefGoogle Scholar
  32. 32.
    Borges VTM, Zanati SG, PeraColi MTS, et al. Maternal hypertrophy and diastolic disfunction and brain natriuretic peptide concentration in early and late pre-Eclampsia. Ultrasound Obstet Gynecol. 2017;51:591–23.Google Scholar
  33. 33.
    Shahul S, Medvedofsky D, Wenger JB, et al. Circulating antiangiogenic factors and myocardial dysfunction in hypertensive disorders of pregnancy. Hypertension. 2016;67(6):1273–80.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hammadah M, Georgiopoulou VV, Kalogeropoulos AP, et al. Elevated soluble Fms-like tyrosine kinase-1 and placental-like growth factor levels are associated with development and mortality risk in heart failure. Circ Heart Fail. 2016;9(1):e002115.PubMedCrossRefGoogle Scholar
  35. 35.
    Groarke JD, Choueiri TK, Slosky D, Cheng S, Moslehi J. Recognizing and managing left ventricular dysfunction associated with therapeutic inhibition of the vascular endothelial growth factor signaling pathway. Curr Treat Options Cardiovasc Med. 2014;16(9):335.PubMedCrossRefGoogle Scholar
  36. 36.
    Kapur NK, Heffernan KS, Yunis AA, et al. Elevated soluble fms-like tyrosine kinase-1 levels in acute coronary occlusion. Arterioscler Thromb Vasc Biol. 2011;31(2):443–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Kapur NK, Wilson S, Yunis AA, et al. Reduced endoglin activity limits cardiac fibrosis and improves survival in heart failure. Circulation. 2012;125(22):2728–38.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cornelis T, Odutayo A, Keunen J, Hladunewich M. The kidney in normal pregnancy and preeclampsia. Semin Nephrol. 2011;31(1):4–14.PubMedCrossRefGoogle Scholar
  39. 39.
    Lafayette RA, Druzin M, Sibley R, et al. Nature of glomerular dysfunction in pre-eclampsia. Kidney Int. 1998;54(4):1240–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Stillman IE, Karumanchi SA. The glomerular injury of preeclampsia. J Am Soc Nephrol. 2007;18(8):2281–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Rolnik DL, Wright D, Poon LC, et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med. 2017;377(7):613–22.PubMedCrossRefGoogle Scholar
  42. 42.
    López-Jaramillo P. Prevention of preeclampsia with calcium supplementation and its relation with the L-arginine:nitric oxide pathway. Braz J Med Biol Res [Internet]. 1996;29(6):731–41. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L26225692 Google Scholar
  43. 43.
    Ahmed A. Molecular mechanisms and therapeutic implications of the carbon monoxide/hmox1 and the hydrogen sulfide/CSE pathways in the prevention of pre-eclampsia and fetal growth restriction. Pregnancy Hypertens. 2014;4(3):243–4.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Holwerda KM, Faas MM, van Goor H, Lely AT. Gasotransmitters: a solution for the therapeutic dilemma in preeclampsia? Hypertension [Internet] 2013 [cited 2014 Oct 16]; 62(4):653–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23959552
  45. 45.
    Woods AK, Hoffmann DS, Weydert CJ, et al. Adenoviral delivery of VEGF121 early in pregnancy prevents spontaneous development of preeclampsia in BPH/5 mice. Hypertens (Dallas, Tex 1979). 2011;57(1):94–102.CrossRefGoogle Scholar
  46. 46.
    Thadhani R, Hagmann H, Schaarschmidt W, et al. Removal of soluble Fms-like tyrosine kinase-1 by dextran sulfate apheresis in preeclampsia. J Am Soc Nephrol. 2016;27(3):903–13.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Drost JT, Arpaci G, Ottervanger JP, et al. Cardiovascular risk factors in women 10 years post early preeclampsia: the Preeclampsia Risk EValuation in FEMales study (PREVFEM). Eur J Prev Cardiol. 2012;19(5):1138–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Mangos GJ, Spaan JJ, Pirabhahar S, Brown MA. Markers of cardiovascular disease risk after hypertension in pregnancy. J Hypertens. 2012;30(2):351–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Magnussen EB, Vatten LJ, Smith GD, Romundstad PR. Hypertensive disorders in pregnancy and subsequently measured cardiovascular risk factors. Obstet Gynecol. 2009;114(5):961–70.PubMedCrossRefGoogle Scholar
  50. 50.
    Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, Paidas MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53(6):944–51.CrossRefPubMedGoogle Scholar
  51. 51.
    Lazdam M, de la Horra A, Diesch J, et al. Unique blood pressure characteristics in mother and offspring after early onset preeclampsia. Hypertension. 2012;60(5):1338–45.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Suzuki H, Watanabe Y, Arima H, Kobayashi K, Ohno Y, Kanno Y. Short- and long-term prognosis of blood pressure and kidney disease in women with a past history of preeclampsia. Clin Exp Nephrol [Internet]. 2008 [cited 2014 Nov 30];12(2):102–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18180874 PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Heida KY, Bots ML, de Groot CJ, et al. Cardiovascular risk management after reproductive and pregnancy-related disorders: a Dutch multidisciplinary evidence-based guideline. Eur J Prev Cardiol. 2016;23(17):1863–79.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lykke JA, Paidas MJ, Triche EW, Langhoff-Roos J. Fetal growth and later maternal death, cardiovascular disease and diabetes. Acta Obstet Gynecol Scand. 2012;91(4):503–10.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Berends AL, de Groot CJ, Sijbrands EJ, et al. Shared constitutional risks for maternal vascular-related pregnancy complications and future cardiovascular disease. Hypertension. 2008;51(4):1034–41.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Brown MC, Best KE, Pearce MS, Waugh J, Robson SC, Bell R. Cardiovascular disease risk in women with pre-eclampsia: systematic review and meta-analysis. Eur J Epidemiol. 2013;28(1):1–19.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Wu P, Haththotuwa R, Kwok CS, et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2017;10(2):e003497.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Riise HKR, Sulo G, Tell GS, et al. Incident coronary heart disease after preeclampsia: role of reduced fetal growth, preterm delivery, and parity. J Am Heart Assoc. 2017;6(3):e004158.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Nilsson PM, Li X, Sundquist J, Sundquist K. Maternal cardiovascular disease risk in relation to the number of offspring born small for gestational age: national, multi-generational study of 2.7 million births. Acta Paediatr. 2009;98(6):985–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Zoet GA, Linstra KM, Bernsen MLE, et al. Stroke after pregnancy disorders. Eur J Obstet Gynecol Reprod Biol. 2017;215:264–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Männistö T, Mendola P, Vääräsmäki M, et al. Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation [Internet]. 2013 [cited 2014 Oct 16];127(6):681–90. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4151554&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Wu C-C, Chen S-H, Ho C-H, et al. End-stage renal disease after hypertensive disorders in pregnancy. Am J Obstet Gynecol [Internet]. 2014 [cited 2014 Oct 16];210(2):147.e1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24060448 CrossRefGoogle Scholar
  63. 63.
    Kattah AG, Scantlebury DC, Agarwal S, et al. Preeclampsia and ESRD: the role of shared risk factors. Am J Kidney Dis. 2016;69(4):498–505.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    McDonald SD, Han Z, Walsh MW, Gerstein HC, Devereaux PJ. Kidney disease after preeclampsia: a systematic review and meta-analysis. Am J Kidney Dis [Internet]. 2010 [cited 2014 Oct 16];55(6):1026–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20346562 PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Sandvik MK, Hallan S, Svarstad E, Vikse BE. Preeclampsia and prevalence of microalbuminuria 10 years later. Clin J Am Soc Nephrol [Internet]. 2013 [cited 2014 Oct 16];8(7):1126–34. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3700700&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Berks D, Steegers EA, Molas M, Visser W. Resolution of hypertension and proteinuria after preeclampsia. Obstet Gynecol. 2009;114(6):1307–14.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Paauw ND, Joles JA, Drost JT, et al. High-normal estimated glomerular filtration rate in early-onset preeclamptic women 10 years postpartum. Hypertension. 2016;68(6):1407–14.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Toering TJ, van der Graaf AM, Visser FW, et al. Higher filtration fraction in formerly early-onset preeclamptic women without comorbidity. Am J Physiol Physiol. 2015;308(8):F824–31.CrossRefGoogle Scholar
  69. 69.
    Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev. 2012;8(5):293–300.Google Scholar
  70. 70.
    Weissgerber TL, Milic NM, Milin-Lazovic JS, Garovic VD. Impaired flow-mediated dilation before, during, and after preeclampsia: a systematic review and meta-analysis. Hypertension. 2016;67(2):415–23.PubMedGoogle Scholar
  71. 71.
    Breetveld NM, Ghossein-Doha C, van Neer J, et al. Decreased endothelial function and increased subclinical heart failure in women, many years after pre-eclampsia. Ultrasound Obstet Gynecol. 2017;Google Scholar
  72. 72.
    Alma LJ, Bokslag A, Maas AHEM, Franx A, Paulus WJ, de Groot CJM. Shared biomarkers between female diastolic heart failure and pre-eclampsia: a systematic review and meta-analysis. ESC Hear Fail. 2017;4(2):88–98.CrossRefGoogle Scholar
  73. 73.
    Behrens I, Basit S, Lykke JA, et al. Association between hypertensive disorders of pregnancy and later risk of cardiomyopathy. JAMA. 2016;315(10):1026–33.PubMedCrossRefGoogle Scholar
  74. 74.
    van Rijn BB, Nijdam M-E, Bruinse HW, et al. Cardiovascular disease risk factors in women with a history of early-onset preeclampsia. Obstet Gynecol [Internet] 2013 [cited 2014 Oct 16];121(5):1040–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23635741
  75. 75.
    Hermes W, Franx A, van Pampus MG, et al. Cardiovascular risk factors in women who had hypertensive disorders late in pregnancy: a cohort study. Am J Obstet Gynecol [Internet]. 2013 [cited 2014 Oct 16];208(6):474.e1–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23399350 CrossRefGoogle Scholar
  76. 76.
    Heida KY, Franx A, van Rijn BB, et al. Earlier Age of Onset of Chronic Hypertension and Type 2 Diabetes Mellitus After a Hypertensive Disorder of Pregnancy or Gestational Diabetes Mellitus. Hypertens (Dallas, Tex 1979). 2015;66(6):1116–22.Google Scholar
  77. 77.
    van der Graaf AM, Toering TJ, van der Wiel MWK, et al. Angiotensin II responsiveness after preeclampsia: translational data from an experimental rat model and early-onset human preeclampsia. J Hypertens. 2017;35(12):2468–78.PubMedCrossRefGoogle Scholar
  78. 78.
    Spaanderman ME, Ekhart TH, de Leeuw PW, Peeters LL. Angiotensin II sensitivity in nonpregnant formerly preeclamptic women and healthy parous controls. J Soc Gynecol Investig. 2004;11(6):416–22.PubMedCrossRefGoogle Scholar
  79. 79.
    Hladunewich MA, Kingdom J, Odutayo A, et al. Postpartum assessment of the renin angiotensin system in women with previous severe, early-onset preeclampsia. J Clin Endocrinol Metab [Internet]. 2011 [cited 2014 Oct 16];96(11):3517–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21880804 CrossRefGoogle Scholar
  80. 80.
    Saxena AR, Karumanchi SA, Brown NJ, Royle CM, McElrath TF, Seely EW. Increased sensitivity to angiotensin II is present postpartum in women with a history of hypertensive pregnancy. Hypertension [Internet]. 2010 [cited 2014 Oct 16];55(5):1239–45. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2880505&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Courtar DA, Spaanderman ME, Aardenburg R, Janssen BJ, Peeters LL. Low plasma volume coincides with sympathetic hyperactivity and reduced baroreflex sensitivity in formerly preeclamptic patients. J Soc Gynecol Investig. 2006;13(1):48–52.PubMedCrossRefGoogle Scholar
  82. 82.
    Grand’Maison S, Pilote L, Okano M, Landry T, Dayan N. Markers of vascular dysfunction after hypertensive disorders of pregnancy: a systematic review and meta-analysis. Hypertension. 2016;68(6):1447–58.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Palti H, Rothschild E. Blood pressure and growth at 6 years of age among offsprings of mothers with hypertension of pregnancy. Early Hum Dev. 1989;19(4):263–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Seidman DS, Laor A, Gale R, Stevenson DK, Mashiach S, Danon YL. Pre-eclampsia and offspring’s blood pressure, cognitive ability and physical development at 17-years-of-age. Br J Obstet Gynaecol. 1991;98(10):1009–14.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Oglaend B, Forman MR, Romundstad PR, Nilsen ST, Vatten LJ. Blood pressure in early adolescence in the offspring of preeclamptic and normotensive pregnancies. J Hypertens. 2009;27(10):2051–4.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Tenhola S, Rahiala E, Halonen P, Vanninen E, Voutilainen R. Maternal preeclampsia predicts elevated blood pressure in 12-year-old children: evaluation by ambulatory blood pressure monitoring. Pediatr Res. 2006;59(2):320–4.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Fraser A, Nelson SM, Macdonald-Wallis C, Sattar N, Lawlor DA. Hypertensive disorders of pregnancy and cardiometabolic health in adolescent offspring. Hypertension. 2013;62(3):614–20.PubMedCrossRefGoogle Scholar
  88. 88.
    Davis EF, Newton L, Lewandowski AJ, et al. Pre-eclampsia and offspring cardiovascular health: mechanistic insights from experimental studies. Clin Sci (Lond). 2012;123(2):53–72.CrossRefGoogle Scholar
  89. 89.
    Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJ. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke. 2009;40(4):1176–80.PubMedCrossRefGoogle Scholar
  90. 90.
    Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ. 1989;298(6673):564–7.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Barker DJ, Osmond C. Low birth weight and hypertension. BMJ. 1988;297(6641):134–5.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Law CM, Shiell AW. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens. 1996;14(8):935–41.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Barker DJ. Adult consequences of fetal growth restriction. Clin Obstet Gynecol. 2006;49(2):270–83.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Gallo LA, Tran M, Moritz KM, Jefferies AJ, Wlodek ME. Pregnancy in aged rats that were born small: cardiorenal and metabolic adaptations and second-generation fetal growth. FASEB J. 2012;26(10):4337–47.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Gallo LA, Tran M, Cullen-McEwen LA, et al. Transgenerational programming of fetal nephron deficits and sex-specific adult hypertension in rats. Reprod Fertil Dev. 2014;26(7):1032–43.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ. 2002;325(7356):157–60.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Craici I, Wagner S, Garovic VD. Preeclampsia and future cardiovascular risk: formal risk factor or failed stress test? Ther Adv Cardiovasc Dis. 2008;2(4):249–59.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    White WM, Garrett AT, Craici IM, et al. Persistent urinary podocyte loss following preeclampsia may reflect subclinical renal injury. PLoS One. 2014;9(3):e92693.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Rasmussen LG, Lykke JA, Staff AC. Angiogenic biomarkers in pregnancy: defining maternal and fetal health. Acta Obstet Gynecol Scand. 2015;94(8):820–32.PubMedCrossRefGoogle Scholar
  100. 100.
    Elvan-Taspinar A, Bots ML, Franx A, Bruinse HW, Engelbert RH. Stiffness of the arterial wall, joints and skin in women with a history of pre-eclampsia. J Hypertens. 2005;23(1):147–51.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Yinon Y, Kingdom JCP, Odutayo A, et al. Vascular dysfunction in women with a history of preeclampsia and intrauterine growth restriction: insights into future vascular risk. Circulation [Internet]. 2010 [cited 2014 Oct 16];122(18):1846–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20956209 PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Everett TR, Mahendru AA, McEniery CM, Wilkinson IB, Lees CC. Effect of S-nitrosoglutathione on arterial stiffness in women with severe preeclampsia and healthy controls. Arch Dis Child Fetal Neonatal Ed [Internet]. 2012;97:A30. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L71393968 CrossRefGoogle Scholar
  103. 103.
    Vikse BE, Irgens LM, Karumanchi SA, Thadhani R, Reisæter AV, Skjærven R. Familial factors in the association between preeclampsia and later ESRD. Clin J Am Soc Nephrol [Internet]. 2012 [cited 2014 Oct 16];7(11):1819–26. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3488941&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Romundstad PR, Magnussen EB, Smith GD, Vatten LJ. Hypertension in pregnancy and later cardiovascular risk: common antecedents? Circulation. 2010;122(6):579–84.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Chambers JC, Fusi L, Malik IS, Haskard DO, De Swiet M, Kooner JS. Association of maternal endothelial dysfunction with preeclampsia. JAMA. 2001;285(12):1607–12.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Maynard SE, Min J, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Faas MM, Schuiling GA, Baller JF, Visscher CA, Bakker WW. A new animal model for human preeclampsia: ultra-low-dose endotoxin infusion in pregnant rats. Am J Obstet Gynecol. 1994;171(1):158–64.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Li J, LaMarca B, Reckelhoff JF. A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. AJP Hear Circ Physiol. 2012;303(1):H1–8.CrossRefGoogle Scholar
  109. 109.
    Bytautiene E, Lu F, Tamayo EH, et al. Long-term maternal cardiovascular function in a mouse model of sFlt-1-induced preeclampsia. Am J Physiol Heart Circ Physiol [Internet]. 2010 [cited 2014 Oct 16];298(1):H189–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19915174 PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Paauw ND, Joles JA, Spradley FT, et al. Exposure to placental ischemia impairs postpartum maternal renal and cardiac function in rats. Am J Physiol Regul Integr Comp Physiol. 2017;312(5):R664–70.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Brennan L, Morton JS, Quon A, Davidge ST. Postpartum vascular dysfunction in the reduced Uteroplacental perfusion model of preeclampsia. PLoS One. 2016;11(9):e0162487.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Pruthi D, Khankin EV, Blanton RM, et al. Exposure to experimental preeclampsia in mice enhances the vascular response to future injury. Hypertension. 2015;65(4):863–70.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Mosca L, Benjamin EJ, Berra K, et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the american heart association. Circulation [Internet]. 2011 [cited 2014 Oct 16];123(11):1243–62. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3182143&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Bushnell C, McCullough LD, Awad IA, et al. Guidelines for the prevention of stroke in women: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45(5):1545–88.PubMedCrossRefGoogle Scholar
  115. 115.
    Zoet GA, Koster MPH, Velthuis BK, et al. Determinants of future cardiovascular health in women with a history of preeclampsia. Maturitas [Internet]. 2015;82(2):153–61. Available from: https://doi.org/10.1016/j.maturitas.2015.07.004 CrossRefGoogle Scholar
  116. 116.
    Milic NM, Milin-Lazovic J, Weissgerber TL, Trajkovic G, White WM, Garovic VD. Preclinical atherosclerosis at the time of pre-eclamptic pregnancy and up to 10 years postpartum: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2017;49(1):110–5.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Sabour S, Franx A, Rutten A, et al. High blood pressure in pregnancy and coronary calcification. Hypertens (Dallas, Tex 1979). 2007;49(4):813–7.CrossRefGoogle Scholar
  118. 118.
    Cassidy-Bushrow AE, Bielak LF, Rule AD, et al. Hypertension during pregnancy is associated with coronary artery calcium independent of renal function. J Womens Health (Larchmt). 2009;18(10):1709–16.CrossRefGoogle Scholar
  119. 119.
    White WM, Mielke MM, Araoz PA, et al. A history of preeclampsia is associated with a risk for coronary artery calcification 3 decades later. Am J Obstet Gynecol [Internet]. 2016;214(4):519.e1–8. Available from: https://doi.org/10.1016/j.ajog.2016.02.003 CrossRefGoogle Scholar
  120. 120.
    Paauw ND, Luijken K, Franx A, Verhaar MC, Lely AT. Long-term renal and cardiovascular risk after preeclampsia: towards screening and prevention. Clin Sci. 2016;130(4):239–46.PubMedCrossRefGoogle Scholar
  121. 121.
    Berks D, Hoedjes M, Raat H, Duvekot JJ, Steegers EA, Habbema JD. Risk of cardiovascular disease after pre-eclampsia and the effect of lifestyle interventions: a literature-based study. BJOG [Internet]. 2013 [cited 2014 Oct 16];120(8):924–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23530583
  122. 122.
    Cusimano MC, Pudwell J, Roddy M, Cho C-KJ, Smith GN. The maternal health clinic: an initiative for cardiovascular risk identification in women with pregnancy-related complications. Am J Obstet Gynecol. 2014;210(5):438.e1–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center, University Medical Center UtrechtUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations