Advertisement

Arterial Wall Properties in Men and Women: Hemodynamic Analysis and Clinical Implications

  • John K.-J. Li
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)

Abstract

The properties of arterial walls are dictated by their underlying structure, which is responsible for the adequate perfusion of conduit branching arteries and their vascular beds. Beginning with the mechanobiology of arteries in terms of their composition and individual contributions to overall viscoelastic behavior in men and women, pressure–flow relations are analyzed and noted in terms of sex differences. Hemodynamic function in terms of indices of vascular stiffness—such as pressure–strain elastic modulus, pulse wave velocity, augmentation index, and cardio–ankle vascular index—are evaluated. They all showed differences between the sexes, and these differences also were shown among people of different cultures. Recent studies also showed, in heart failure patients, a comparatively greater increase in peripheral resistance and a greater decreased arterial compliance in women. Wave separation into forward and reflected waves allows elucidation of mechanical and drug-treated similarities and differences in induced hypertension. This may provide insight into treatment strategy in terms of improving mechanobiology and designing drug therapy for the sexes. Finally, modeling studies are useful in identifying how arterial compliance and its pressure dependence can be better used in differentiating aging- and hypertension-induced changes that differentially affect the sexes.

Keywords

Vascular mechanics Hemodynamic monitoring Pulse waveform analysis Arterial compliance Mechanobiology Sex differences 

References

  1. 1.
    Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Circulation. 1977;95:1827–36.CrossRefGoogle Scholar
  2. 2.
    Coutinho T, Borlaug BA, Pellikka PA, Turner ST, Kullo IJ. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61:96–103.CrossRefPubMedGoogle Scholar
  3. 3.
    Cox RH. Arterial wall mechanics and composition and the effects of smooth muscle activation. Am J Physiol. 1975;229:807–12.PubMedGoogle Scholar
  4. 4.
    D’Armiento J. Decreased elastin in vessel walls puts the pressure on. J Clin Invest. 2003;112(9):1308–10.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Devereux RB, de Simone G, Ganau A, Koren MJ, Mensah GA, Roman MJ. Left ventricular hypertrophy and hypertension. Clin Exp Hypertens. 1993;15:1025–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Dobrin PB, Mrkvicka R. Failure of elastin or collagen as possible critical connective tissue alterations underlying aneurysmal dilatation. Cardiovasc Surg. 1994;2:484–8.PubMedGoogle Scholar
  7. 7.
    Drzewiecki G, Field S, Mubarak I, Li JK-J. Effect of vascular growth pattern on lumen area and compliance using a novel pressure-area model for collapsible vessels. Am J Physiol (Heart & Circ Physiol). 1997;273:H2030–43.CrossRefGoogle Scholar
  8. 8.
    Dubin RF, Guajardo I, Ayer A, Mills C, Donovan C, Beussink L, et al. Associations of macro- and microvascular endothelial dysfunction with subclinical ventricular dysfunction in end-stage renal disease. Hypertension. 2016;68:913–20.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Duprez D, Jacobs DR Jr. Arterial stiffness and left ventricular diastolic function. Does sex matter? Hypertension. 2012;60:283–4.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Farhat MY, Lavigne MC, Ramwell PW. The vascular protective effects of estrogen. FASEB J. 1996;10:615–24.CrossRefPubMedGoogle Scholar
  11. 11.
    Frank O. Die Grundform des arteriellen pulses. Z Biol. 1899;37:483–526.Google Scholar
  12. 12.
    Guajardo I, Ayer A, AD Johnson PG, Mills C, Donovan C, Scherzer R, et al. Sex differences in vascular dysfunction and cardiovascular outcomes: the cardiac, endothelial function, and arterial stiffness in ESRD (CERES) study. Hemodial Int. 2017;22:93. https://doi.org/10.1111/hdi.12544.CrossRefPubMedGoogle Scholar
  13. 13.
    Hansen F, P Mangell B, Sonesson TL. Diameter and compliance in the human common carotid artery – variations with age and sex. Ultrasound Med Biol. 1995;21:l–9.CrossRefGoogle Scholar
  14. 14.
    Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K. Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech. 1980;13:175–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Hayward CS, Kelly RP. Gender-related differences in the central arterial pressure waveform. J Am Coll Cardiol. 1997;30:1863–71.CrossRefPubMedGoogle Scholar
  16. 16.
    Hughes WE, Spartano NL, Lefferts WK, Augustine JA, Heffernan KS. Sex differences in noninvasive estimates of left ventricular pressure energetics but not myocardial oxygen demand in young adults. Artery Research. 2014;8:197–204.CrossRefGoogle Scholar
  17. 17.
    Karamanoglu M, O’Rourke MF, Avolio AP, Kelly RP. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Euro Heart J. 1993;14:160–7.CrossRefGoogle Scholar
  18. 18.
    Kawasaki T, Sasayama S, Yagi S, Asakawa T, Hirai T. Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovasc Res. 1987;21:678–87.CrossRefPubMedGoogle Scholar
  19. 19.
    Kerkhof PLM, Kresh JY, Li JK-J, Heyndrickx GR. Left ventricular volume regulation in heart failure with preserved ejection fraction. Physiol Report. 2013;1(2):1–10.CrossRefGoogle Scholar
  20. 20.
    Kerkhof PLM, GR Heyndrickx, JK-J Li. Hemodynamic determinants and ventriculo-arterial coupling are sex-associated in heart failure patients. In: Proceeding of 38th annual international conference of the IEEE engineering in medicine and biology society, IEEE X-plore; 2016.Google Scholar
  21. 21.
    Kim H, Kim M, W Shim SO, Kim M, Park SM, Kim YH, et al. Sex difference in the association between brachial pulse pressure and coronary artery disease: the Korean women’s chest pain registry (KoROSE). J Clin Hypertens (Greenwich). 2017;19:38–44.CrossRefGoogle Scholar
  22. 22.
    Kim J, Park DS Kim JB, Kim KS, Jeong JW, Park JC, Oh BH, et al. On behalf of the KAAS investigators. Gender difference in arterial stiffness in a multicenter cross-sectional study: the Korean Arterial Aging Study (KAAS). Pulse. 2014;2:11–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kool MJF, van Merode T, Reneman RS, Hoeks APG, Struijker Boudier HA. Evaluation of reproducibility of a vessel wall movement detector system for assessment of large artery properties. Cardiovasc Res. 1994;28:610–4.CrossRefPubMedGoogle Scholar
  24. 24.
    Li JK-J. Pressure-derived flow: a new method. IEEE Trans Biomed Eng BME. 1983;30:244–6.CrossRefGoogle Scholar
  25. 25.
    Li JK-J. Regional left ventricular mechanics during myocardial ischemia. In: Sideman S, editor. Simulation and modeling of the cardiac system. Boston: Martinus Nijhoff Publishers; 1987. p. 451–62.Google Scholar
  26. 26.
    Li JK-J. Feedback effects in heart-arterial system interaction. In: Sideman S, Beyar R, editors. Interactive phenomenon in the cardiac system. New York: Plenum; 1993. p. 325–33.CrossRefGoogle Scholar
  27. 27.
    Li JK-J. A new description of arterial function: the compliance-pressure loop. Angiology. J Vascular Diseas. 1998;49:543–8.Google Scholar
  28. 28.
    Li JK-J. The arterial circulation: physical principles and clinical applications. New York: Springer; 2000.CrossRefGoogle Scholar
  29. 29.
    Li JK-J. Dynamics of the vascular system. Singapore: World Scientific Publishers; 2004.CrossRefGoogle Scholar
  30. 30.
    Li JK-J, Cui T, Drzewiecki G. A nonlinear model of the arterial system incorporating a pressure-dependent compliance. IEEE Trans Biomed Eng BME. 1990;37:673–8.CrossRefGoogle Scholar
  31. 31.
    Li JK-J, Zhu JY, Nanna M. Computer modeling of the effects of aortic valve stenosis and arterial system afterload on left ventricular hypertrophy. Comput Biol Med. 1997;27:477–85.CrossRefPubMedGoogle Scholar
  32. 32.
    Li JK-J, Zhu Y, O’Hara D, Khaw K. Allometric hemodynamic analysis of isolated systolic hypertension and aging. Cardiovasc Eng. 2007;7:135–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Li JK-J, Zhu Y, Geipel PS. Pulse pressure, arterial compliance and wave reflection under differential vasoactive and mechanical loading. Cardiovasc Eng. 2010;10:170–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Li JK-J, Atlas G. Left ventricle–arterial system interaction in heart failure. Clin Med Insight: Cardiol. 2015;9(Suppl 1):93–9. https://doi.org/10.4137/CMC.S18742.CrossRefGoogle Scholar
  35. 35.
    Li JK-J, Zhu Y, Noordergraaf A. A comparative approach to analysis and modeling of cardiovascular function. Molecular, cellular, and tissue engineering. In: Bronzino JD, Peterson DR, editors. Biomedical engineering handbook, 4th ed. Chapter 26, pp26. London/New York: CRC Press/Boca Raton; 2015. p. 1–12.Google Scholar
  36. 36.
    Li JK-J, Zhu Y. Arterial compliance and its pressure dependence in hypertension and vasodilation. Angiology, J Vasc Diseas. 1994;45:113–7.Google Scholar
  37. 37.
    Liu C, Zhao L, Liu C. Effects of blood pressure and sex on the change of wave reflection: evidence from Gaussian fitting method for radial artery pressure waveform. PLoS One. 2014;9(11):e112895.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Liu Z, Brin KP, Yin FC. Estimation of total arterial compliance: an improved method and evaluation of current methods. Am J Phys. 1986;251:H588–600.CrossRefGoogle Scholar
  39. 39.
    Nishiwaki M, Kurobe K, Kiuchi A, Nakamura T. N Matsumoto. Sex differences in flexibility-arterial stiffness relationship and its application for diagnosis of arterial stiffening: a cross-sectional observational study. PLoS One. 2014; https://doi.org/10.1371/journal.pone.0113646.
  40. 40.
    Noordergraaf A. Circulatory system dynamics. New York: Academic; 1978.Google Scholar
  41. 41.
    Patel A, Li JK-J. Aortic pressure estimation using blind identification approach on single input multiple output non-linear Wiener systems. IEEE Trans Biomed Eng. 2017a. https://doi.org/10.1109/TBME.2017.2688425
  42. 42.
    Patel A, Li JK-J. Validation of a novel nonlinear black box Wiener System model for arterial pulse transmission. Comput Biol Med. 2017b;88:11. https://doi.org/10.1016/j.compbiomed.2017.06.020.CrossRefPubMedGoogle Scholar
  43. 43.
    Phan TS, Li JK-J, Segers P, Reddy-Koppula M, Akers SR, Kuna ST, et al. Aging is associated with an earlier arrival of reflected waves without a distal shift in reflection sites. J Am Heart Assoc. 2016;5:e003733. https://doi.org/10.1161/JAHA.116.003733.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Qiu H, Depre C, Ghosh K, Resuello RG, Natividad F, Rossi F, et al. Mechanism of gender-specific differences in aortic stiffness with aging in nonhuman primates. Circulation. 2007;116:669–76.CrossRefPubMedGoogle Scholar
  45. 45.
    Russo C, Jin Z, Palmieri V, Homma S, Rundek T, Elkind MSV, et al. Arterial stiffness and wave reflection sex differences and relationship with left ventricular diastolic function. Hypertension. 2012;60:362–8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shirai K, Utino J, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter; Cardio-Ankle Vascular Index (CAVI). J Atheroscler Thromb. 2006;13:101–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Sonesson B, Hansen F, Stale H, Lanne T. Compliance and diameter in the human abdominal aorta- the influence of age and sex. Eur J Vasc Surg. 1993;7:690–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Stoner L, Faulknera J, Westruppb N, Lambrick D. Sexual differences in central arterial wave reflection are evident in prepubescent children. J Hypertens. 2015;33:304–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Tomiyama H, Yamashina A, Arai T, Hirose K, Koji Y, et al. Influences of age and gender on results of noninvasive brachial-ankle pulse wave velocity measurement–a survey of 12517 subjects. Atherosclerosis. 2003;166:303–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Van der Heijden-Spek JJ, Staessen JA, Fagard RH, Hoeks AP, Struijker Boudier HA, Van Bortel LM. Effect of age on brachial Artery Wall properties differs from the aorta and is gender dependent. A population study. Hypertension. 2000;35:637–42.CrossRefPubMedGoogle Scholar
  51. 51.
    Villard C, Eriksson P, Swedenborg J, Hultgren R. Differences in elastin and elastolytic enzymes between men and women with abdominal aortic aneurysm. Aorta. 2014;2:179–85.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wagenseil JE, Mecham RP. Elastin in large artery stiffness and hypertension. J Cardiovas Translat Res. 2012;5:264–73.CrossRefGoogle Scholar
  53. 53.
    Weizsacker H.W. and K. Pascal. Anisotropic passive properties of blood vessel walls. In: Cardiovascular system dynamics: models and measurements, pp. 347–362. Eds. T. Kenner, R. Busse, H. Hinghofer-Szalkay, Plenum, 1982.CrossRefGoogle Scholar
  54. 54.
    Wells SM, Langeille BL, Adamson SL. In vivo and in vitro mechanical properties of the sheep in thoracic aorta in the perinatal period and adulthood. Am J Phys. 1998;274:H1749–60.Google Scholar
  55. 55.
    Zhang H, Li JK-J. A novel wave reflection model of the human arterial system. Cardiovasc Eng. 2009;9:39–48.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringRutgers UniversityPiscatawayUSA

Personalised recommendations