Advertisement

The Heart as a Psychoneuroendocrine and Immunoregulatory Organ

  • Carlo Dal Lin
  • Francesco Tona
  • Elena Osto
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)

Abstract

The heart can be viewed not just as muscle pump but also as an important checkpoint for a complex network of nervous, endocrine, and immune signals. The heart is able to process neurological signals independently from the brain and to crosstalk with the endocrine and immune systems. The heart communicates with the psyche through the neuro-endocrine-immune system in a highly integrated way, in order to maintain the homeostasis of the whole body with peculiarities specific to males and females.

Keywords

Alarmin Beta-blocker Brain-heart axis Cardiokine Emotion Heart-brain interaction Mental stress Psychic factors in heart disease Psychosocial stress Neuroendocrine regulation Immunoregulatory function Pattern recognition receptor Toll-like receptor Sex-specific analysis Review 

References

  1. 1.
    Harvey W. On the motion of the heart and blood in animals. Vol. 38, Part 3. The Harvard classics. New York: P.F. Collier & Son, 1909–14; Bartleby.com, 2001. 1628.Google Scholar
  2. 2.
    Darwin C. The expression of the emotions in man and animals. California Medicine. 1956;85.Google Scholar
  3. 3.
    Colzato LS, Sellaro R, Beste C. Darwin revisited: the vagus nerve is a causal element in controlling recognition of other’s emotions. Cortex. 2017;92:95–102.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA. 2007;298:1685–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Dimsdale J, Psychological E. Stress and cardiovascular disease. J Am Col Cardiol. 2008;51:1237–46.CrossRefGoogle Scholar
  6. 6.
    Carroll D, Phillips AC, Balanos GM. Metabolically exaggerated cardiac reactions to acute psychological stress revisited. Psychophysiology. 2009;46:270–5.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Zhang Y, Bauersachs J, Langer HF. Immune mechanisms in heart failure. Eur J Heart Fail. 2017. https://doi.org/10.1002/ejhf.942.
  8. 8.
    Ader R, Cohen N, Felten D. Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet. 1995;345:99–103.PubMedCrossRefGoogle Scholar
  9. 9.
    Ader R. Psychoneuroimmunology, two-volume set. Elsevier; 2011.Google Scholar
  10. 10.
    Bottaccioli F. Epigenetica e psiconeuroendocrinoimmunologia. Edra S.p.A; 2014.Google Scholar
  11. 11.
    Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. Dev Comp Immunol. 2017;66:2–23.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    McEwen BS. Protective and damaging effects of stress mediators: the good and bad sides of the response to stress. Metab Clin Exp. 2002;51:2–4.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5:374–81.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21:153–60.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Eisenberger NI, Moieni M, Inagaki TK, Muscatell KA, Irwin MR. In sickness and in health: the co-regulation of inflammation and social behavior. Neuropsychopharmacol Rev. 2017;42(1):242–53.CrossRefGoogle Scholar
  16. 16.
    Draganski B, et al. Temporal and spatial dynamics of brain structure changes during extensive learning. J Neurosci. 2006;26:6314–7.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Fioranelli M. Integrative cardiology. Springer; 2017. https://doi.org/10.1007/978-3-319-40010-5
  18. 18.
    Bottaccioli F, Bottaccioli AG. Psiconeuroendocrinoimmunologia e scienza della cura integrata. Il manuale. Edra S.p.A; 2017.Google Scholar
  19. 19.
    Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci. 2013;33:9003–12.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Reynolds RM, Labad J, Buss C, Ghaemmaghami P, Räikkönen K. Transmitting biological effects of stress in utero: implications for mother and offspring. Psychoneuroendocrinology. 2013;38:1843–9.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Patchev VK, Almeida OF. Gender specificity in the neural regulation of the response to stress: new leads from classical paradigms. Mol Neurobiol. 1998;16:63–77.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Patchev VK, Hayashi S, Orikasa C, Almeida OF. Implications of estrogen-dependent brain organization for gender differences in hypothalamo-pituitary-adrenal regulation. FASEB J. 1995;9:419–23.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bangasser DA, Wicks B. Sex-specific mechanisms for responding to stress. J Neurosci Res. 2017;95:75–82.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bale TL, Epperson CN. Sex differences and stress across the lifespan. Nat Neurosci. 2015;18:1413–20.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kajantie E, Phillips DIW. The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology. 2006;31:151–78.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kudielka BM, Hellhammer DH, Wüst S, Kudielka BM. Why do we respond so differently? reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology. 2009;34:2–18.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Mastorakos G, Ilias I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci. 2003;997:136–49.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Saleh TM, Connell BJ. Estrogen-induced autonomic effects are mediated by NMDA and GABAA receptors in the parabrachial nucleus. Brain Res. 2003;973:161–70.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Nelson LH, Lenz KM. The immune system as a novel regulator of sex differences in brain and behavioral development. J Neurosci Res. 2017;95:447–61.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Barabási A-L, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol. 2012;8:1–9.CrossRefGoogle Scholar
  32. 32.
    Lindfors E. Network biology. VTT Publication; 2011. p. 1–81. https://doi.org/10.1007/978-1-61779-276-2
  33. 33.
    Dal Lin C, Tona F, Osto E. Coronary microvascular function and beyond: the crosstalk between hormones, cytokines, and neurotransmitters. Int J Endocrinol. 2015;2015:1–17.CrossRefGoogle Scholar
  34. 34.
    Torrent-Guasp F, et al. The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart. Semin Thorac Cardiovasc Surg. 2001;13:301–19.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Buckberg GD, et al. The structure and function of the helical heart and its buttress wrapping. IV. Concepts of dynamic function from the normal macroscopic helical structure. Semin Thorac Cardiovasc Surg. 2001;13:342–57.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Buckberg GD, Coghlan HC, Torrent-Guasp F. The structure and function of the helical heart and its buttress wrapping. V. Anatomic and physiologic considerations in the healthy and failing heart. Semin Thorac Cardiovasc Surg. 2001;13:358–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Buckberg GD, Coghlan HC, Torrent-Guasp F. The structure and function of the helical heart and its buttress wrapping. VI. Geometric concepts of heart failure and use for structural correction. Semin Thorac Cardiovasc Surg. 2001;13:386–401.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Buckberg GD, Coghlan HC, Hoffman JI, Torrent-Guasp F. The structure and function of the helical heart and its buttress wrapping. VII. Critical importance of septum for right ventricular function. Semin Thorac Cardiovasc Surg. 2001;13:402–16.PubMedCrossRefGoogle Scholar
  39. 39.
    Kocica MJ, et al. The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium. Eur J Cardiothorac Surg. 2006;29(Suppl 1):S21–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Buckberg GD, Hoffman JIE, Coghlan HC, Nanda NC. Ventricular structure–function relations in health and disease: Part II. Clinical considerations. Eur J Cardio-Thoracic Surg. 2015;47:778–87.CrossRefGoogle Scholar
  41. 41.
    Buckberg GD, Hoffman JIE, Coghlan HC, Nanda NC. Ventricular structure–function relations in health and disease: Part I. The normal heart. Eur J Cardio-Thoracic Surg. 2015;47:587–601.CrossRefGoogle Scholar
  42. 42.
    Buckberg G. The helical ventricular myocardial band during standard echocardiography: a structure-function relationship. Echocardiography. 2015;32:199–204.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Guyton AC. Textbook of medical physiology. Philadelphia: Elsevier Inc.; 2006.Google Scholar
  44. 44.
    Bernardi L, et al. Respiratory sinus arrhythmia in the denervated human heart. J Appl Physiol. 1989;67:1447–55.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ordway GA, Charles JB, Randall DC, Billman GE, Wekstein DR. Heart rate adaptation to exercise training in cardiac-denervated dogs. J Appl Physiol. 1982;52:1586–90.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Mettauer B, et al. Exercising with a denervated heart after cardiac transplantation. Ann Transplant, Q Pol Transplant Soc. 2005;10:35–42.Google Scholar
  47. 47.
    Camm JA, Luscher TF, Serruys PW. ESC textbook of cardiovascular medicine. 2nd ed. Oxford: Oxford Medicine; 2009. p. 1–1398.CrossRefGoogle Scholar
  48. 48.
    Pagani M, et al. Low and high frequency components of blood pressure variability. Ann N Y Acad Sci. 1996;783:10–23.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Pagani M, Lucini D, Montano N, Porta A, Malliani A. Physiological background of heart rate variability: do we understand it better? Card Electrophysiol Rev. 1999;3:274–8.CrossRefGoogle Scholar
  50. 50.
    Lucini D, Pagani M. Exercise: should it matter to internal medicine? Eur J Intern Med. 2011;22:363–70.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Lane RD, et al. Neural correlates of heart rate variability during emotion. NeuroImage. 2009;44:213–22.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Dal Lin C, et al. Coronary microvascular and endothelial function regulation: crossroads of psychoneuroendocrine immunitary signals and quantum physics [Part A]. J Integr Cardiol. 2015;1:132–63.Google Scholar
  53. 53.
    Dal Lin C, et al. Coronary microvascular and endothelial function regulation: crossroads of psychoneuroendocrine immunitary signals and quantum physics [Part B]. J Integr Cardiol. 2015;1:164–88.Google Scholar
  54. 54.
    Dal Lin C, et al. Coronary microvascular and endothelial function regulation: crossroads of psychoneuroendocrine immunitary signals and quantum physics [Part C]. J Integr Cardiol. 2015;1:189–209.Google Scholar
  55. 55.
    Stock EO, Redberg R. Cardiovascular disease in women. Curr Probl Cardiol. 2012;37:450–526.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Pereira HV, José J, Almeida J, Sousa N. Stressed brain, diseased heart: a review on the pathophysiologic mechanisms of neurocardiology. Int J Cardiol. 2013;166:30–7.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    van der Wall EE, van Gilst WH. Neurocardiology: close interaction between heart and brain. Neth Heart J. 2013;21:51–2.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9:286–94.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Armour JA. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp Physiol. 2008;93:165–76.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Armour JA. The little brain on the heart. Cleve Clin J Med. 2007;74(Suppl 1):S48–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Armour JA, Ardell JL. Basic and clinical neurocardiology. Oxford: Oxford University Press; 2004.Google Scholar
  62. 62.
    Lyon AR, Rees PSC, Prasad S, Poole-Wilson PA, Harding SE. Stress (Takotsubo) cardiomyopathy--a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Pract Cardiovasc Med. 2008;5:22–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Murphy DA, O’Blenes S, Hanna BD, Armour JA. Functional capacity of nicotine-sensitive canine intrinsic cardiac neurons to modify the heart. Am J Phys. 1994;266:R1127–35.Google Scholar
  64. 64.
    Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014;5:1040.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nunan D, Sandercock GRH, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. PACE – Pacing Clin Electrophysiol. 2010;33:1407–17.PubMedCrossRefGoogle Scholar
  66. 66.
    Kukanova B, Mravec B. Complex intracardiac nervous system. Bratisl Lek Listy. 2006;107:45–51.PubMedGoogle Scholar
  67. 67.
    Verkerk AO, et al. Functional NaV1.8 channels in intracardiac neurons: the link between SCN10A and cardiac electrophysiology. Circ Res. 2012;111:333–43.PubMedCrossRefGoogle Scholar
  68. 68.
    Cameron OG. Visceral sensory neuroscience interoception. New York: Oxford University Press; 2002.Google Scholar
  69. 69.
    Randall DC, Evans JM, Billman GE, Ordway GA, Knapp CF. Neural, hormonal and intrinsic mechanisms of cardiac control during acute coronary occlusion in the intact dog. J Auton Nerv Syst. 1981;3:87–99.PubMedCrossRefGoogle Scholar
  70. 70.
    Lacey BC, Lacey JI. Two-way communication between the heart and the brain. Significance of time within the cardiac cycle. Am Psychol. 1978;33:99–113.PubMedCrossRefGoogle Scholar
  71. 71.
    McCraty R, Shaffer F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Heal Med. 2015;4:46–61.CrossRefGoogle Scholar
  72. 72.
    Somsen RJM, Jennings JR, Van Der Molen MW. The cardiac cycle time effect revisited: temporal dynamics of the central-vagal modulation of heart rate in human reaction time tasks. Psychophysiology. 2004;41:941–53.PubMedCrossRefGoogle Scholar
  73. 73.
    Velden M, Wolk C. Depicting cardiac activity over real time: a proposal for standardization. J Psychophysiol. 1987;1:173–5.Google Scholar
  74. 74.
    Lane RD, Reiman EM, Ahern GL, Thayer JF. Activity in medial prefrontal cortex correlates with vagal component of heart rate variability during emotion. Brain Cogn. 1982;47:97–100. (Academic Press)Google Scholar
  75. 75.
    Jennings JR, Sheu LK, Kuan DC-H, Manuck SB, Gianaros PJ. Resting state connectivity of the medial prefrontal cortex covaries with individual differences in high-frequency heart rate variability. Psychophysiology. 2016;53:444–54.PubMedCrossRefGoogle Scholar
  76. 76.
    McCraty R, Atkinson M, Bradley RT. Electrophysiological evidence of intuition: part 2. A system-wide process? J Altern Complement Med. 2004;10:325–36.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Elam M, Yoa T, Svensson TH, Thoren P. Regulation of locus coeruleus neurons and splanchnic, sympathetic nerves by cardiovascular afferents. Brain Res. 1984;290:281–7.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Elam M, Svensson TH, Thoren P. Differentiated cardiovascular afferent regulation of locus coeruleus neurons and sympathetic nerves. Brain Res. 1985;358:77–84.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Elam M, Thorén P, Svensson TH. Locus coeruleus neurons and sympathetic nerves: activation by visceral afferents. Brain Res. 1986;375:117–25.PubMedCrossRefGoogle Scholar
  80. 80.
    Schandry R, Montoya P. Event-related brain potentials and the processing of cardiac activity. Biol Psychol. 1996;42:75–85.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Montoya P, Schandry R, Müller A. Heartbeat evoked potentials (HEP): topography and influence of cardiac awareness and focus of attention. Electroencephalogr Clin Neurophysiol. 88:163–72.CrossRefGoogle Scholar
  82. 82.
    Zhang JX, Harper RM, Frysinger RC. Respiratory modulation of neuronal discharge in the central nucleus of the amygdala during sleep and waking states. Exp Neurol. 1986;91:193–207.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Frysinger RC, Zhang JX, Harper RM. Cardiovascular and respiratory relationships with neuronal discharge in the central nucleus of the amygdala during sleep-waking states. Sleep. 1988;11:317–32.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Garfinkel SN, et al. Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats. J Neurosci. 2014;34:6573–82.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Child N, et al. Effect of mental challenge induced by movie clips on action potential duration in normal human subjects independent of heart rate. Circ Arrhythm Electrophysiol. 2014;7:518–23.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Chen K-H, Aksan N, Anderson SW, Grafft A, Chapleau MW. Habituation of parasympathetic-mediated heart rate responses to recurring acoustic startle. Front Psychol. 2014;5:1288.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Cabrerizo M, et al. Induced effects of transcranial magnetic stimulation on the autonomic nervous system and the cardiac rhythm. Sci World J. 2014;2014(349):718.Google Scholar
  88. 88.
    Peters A, et al. Exposure to traffic and the onset of myocardial infarction. N Engl J Med. 2004;351:1721–30.PubMedCrossRefGoogle Scholar
  89. 89.
    Trappe H-J. The effect of music on human physiology and pathophysiology. Music Med. 2012;4:100–5.CrossRefGoogle Scholar
  90. 90.
    Palma J-A, Benarroch EE. Neural control of the heart: recent concepts and clinical correlations. Neurology. 2014;83:261–71.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Thayer JF, Lane RD. A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord. 2000;61:201–16.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Park G, Thayer JF. From the heart to the mind: cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Front Psychol. 2014;5:278.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Thayer JF, Brosschot JF. Psychosomatics and psychopathology: looking up and down from the brain. Psychoneuroendocrinology. 2005;30:1050–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Thayer JF, Ahs F, Fredrikson M, Sollers JJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36:747–56.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Thayer JF, Lane RD. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev. 2009;33:81–8.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Thayer JF, Sternberg E. Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci. 2006;1088:361–72.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Lin P-F, et al. Correlations between the signal complexity of cerebral and cardiac electrical activity: a multiscale entropy analysis. PLoS One. 2014;9:e87798.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Aftanas LI, Brak IV, Reva NV, Pavlova SV. Brain oscillations and individual variability of cardiac defense in human. Ross Fiziol Zh Im I M Sechenova. 2013;99:1342–56.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Aftanas LI, Brak IV, Gilinskaia OM, Pavlov SV, Reva NV. Features of brain oscillatory activity and cardiac defense in treatment arterial hypertensives. Ross Fiziol Zh Im I M Sechenova. 2014;100:112–27.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Rahman SU, Hassan M. Heart’s role in the human body: a literature review. ICCSS. 2013;2:1–6.Google Scholar
  101. 101.
    Garfinkel SN, et al. What the heart forgets: cardiac timing influences memory for words and is modulated by metacognition and interoceptive sensitivity. Psychophysiology. 2013;50:505–12.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Gray MA, et al. Emotional appraisal is influenced by cardiac afferent information. Emotion. 2012;12:180–91.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Craig AD. How do you feel — now? the anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Craig AD. How do you feel? interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3:655–66.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Craig AD. How do you feel?: an interoceptive moment with your neurobiological self. How do you feel?: an interoceptive moment with your neurobiological self. Princeton: Princeton University Press; 2014.Google Scholar
  106. 106.
    Grossmann I, Sahdra BK, Ciarrochi J, Haller J, Glück J. A heart and a mind: self-distancing facilitates the association between heart rate variability, and wise reasoning. Front Behav Neurosci. 2016. https://doi.org/10.3389/fnbeh.2016.00068.
  107. 107.
    Taggart P, Boyett MR, Logantha S, Lambiase PD. Anger, emotion, and arrhythmias: from brain to heart. Front Physiol. 2011;2:67.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Atlas SA, et al. Purification, sequencing and synthesis of natriuretic and vasoactive rat atrial peptide. Nature. 1984;309:717–9.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Cantin M, Genest J. The heart is an endocrine gland. Kardiol Pol. 1986;29:169–73.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Shimano M, Ouchi N, Walsh K. Cardiokines: recent progress in elucidating the cardiac secretome. Circulation. 2012;126:e327–32.PubMedCrossRefGoogle Scholar
  111. 111.
    Gupta DK, Wang TJ. Natriuretic peptides and cardiometabolic health. Circ J. 2015;79:1647–55.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Zois NE, et al. Natriuretic peptides in cardiometabolic regulation and disease. Nat Rev Cardiol. 2014;11:403–12.PubMedCrossRefGoogle Scholar
  113. 113.
    Bordicchia M, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122:1022–36.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Frangogiannis NG. The immune system and the remodeling infarcted heart. J Cardiovasc Pharmacol. 2014;63:185–95.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol. 2015;15:117–29.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2006;81:1–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Picard M, et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci. 2015;112:E6614–23.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Oka T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485:251–5.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Alevizos M, Karagkouni A, Panagiotidou S, Vasiadi M, Theoharides TC. Stress triggers coronary mast cells leading to cardiac events. Ann Allergy Asthma Immunol. 2014;112:309–16.PubMedCrossRefGoogle Scholar
  120. 120.
    Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. Nat Rev Immunol. 2006;6:218–30.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Janicki JS, Brower GL, Levick SP. Mast cells: methods and protocols. New York: Springer; 2014. p. 121–39. https://doi.org/10.1007/978-1-4939-1568-2_8.CrossRefGoogle Scholar
  122. 122.
    Metcalfe DD, Baram D, Mekori Y a. Mast cells. Physiol Rev. 1997;77:1033–79.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Levick SP, et al. Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc Res. 2011;89:12–9.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Kim MS, Chae HJ, Shin TY, Kim HM, Kim HR. Estrogen regulates cytokine release in human mast cells. Immunopharmacol Immunotoxicol. 2001;23:495–504.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Flammer AJ, et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126:753–67.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Anderson JL, et al. Parathyroid hormone, vitamin D, renal dysfunction, and cardiovascular disease: dependent or independent risk factors? Am Heart J. 2011;162:331–339.e2.PubMedCrossRefGoogle Scholar
  127. 127.
    Osto E, et al. Coronary microvascular dysfunction induced by primary hyperparathyroidism is restored after parathyroidectomy. Circulation. 2012;126:1031–9.PubMedCrossRefGoogle Scholar
  128. 128.
    Davel AP, et al. Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update. Braz J Med Biol Res. 2011;44:920–32.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Abdu TA, Elhadd T, Pfeifer M, Clayton RN. Endothelial dysfunction in endocrine disease. Trends Endocrinol Metab. 2001;12:257–65.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Colao A, et al. The heart: an end-organ of GH action. Eur J Endocrinol. 2004;151:S93–S101.PubMedCrossRefGoogle Scholar
  131. 131.
    Colao A. The GH-IGF-I axis and the cardiovascular system: clinical implications. Clin Endocrinol. 2008;69:347–58.CrossRefGoogle Scholar
  132. 132.
    Fallo F, et al. Coronary microvascular function in patients with Cushing’s syndrome. Endocrine. 2013;43:206–13.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Caretta N, et al. Low serum testosterone as a new risk factor for chronic rejection in heart transplanted men. Transplantation. 2013;96:501–5.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Caretta N, et al. Erectile dysfunction, penile atherosclerosis, and coronary artery vasculopathy in heart transplant recipients. J Sex Med. 2013;10:2295–302.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Sundell J, Knuuti J. Insulin and myocardial blood flow. Cardiovasc Res. 2003;57:312–9.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Japundžić-Žigon N. Vasopressin and oxytocin in control of the cardiovascular system. Curr Neuropharmacol. 2013;11:218–30.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Cos S, Alvarez-García V, González A, Alonso-González C, Martínez-Campa C. Melatonin modulation of crosstalk among malignant epithelial, endothelial and adipose cells in breast cancer (Review). Oncol Lett. 2014;8:487–92.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Tare M, et al. Maternal melatonin administration mitigates coronary stiffness and endothelial dysfunction, and improves heart resilience to insult in growth restricted lambs. J Physiol. 2014;592:2695–709.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol. 2014, May;5:115.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Çiftçi O, et al. Association between serum γ-glutamyltransferase levels and coronary microvascular function. Coron Artery Dis. 2013;24:201–8.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Pittman QJ. A neuro-endocrine-immune symphony. J Neuroendocrinol. 2011;23:1296–7.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Tomaselli GF. Introduction to a compendium on sudden cardiac death: epidemiology, mechanisms, and management. Circ Res. 2015;116:1883–6.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Daniel M, et al. Risk factors and markers for acute myocardial infarction with angiographically normal coronary arteries. Am J Cardiol. 2015;116:838–44.PubMedCrossRefGoogle Scholar
  144. 144.
    Nef HM, Möllmann H, Akashi YJ, Hamm CW. Mechanisms of stress (Takotsubo) cardiomyopathy. Nat Rev Cardiol. 2010;7:187–93.PubMedCrossRefGoogle Scholar
  145. 145.
    Y-Hassan S, Feldt K, Stålberg M. A missed penalty kick triggered coronary death in the husband and broken heart syndrome in the wife. Am J Cardiol. 2015;116:1639–42.PubMedCrossRefGoogle Scholar
  146. 146.
    Katsanos S, Filippatou A, Ruschitzka F, Filippatos G. Positive emotions and Takotsubo syndrome: ‘happy heart’ or ‘Diagoras’ syndrome? Eur Heart J. 2016;37:2821–2.PubMedCrossRefGoogle Scholar
  147. 147.
    Ghadri JR, et al. Happy heart syndrome: role of positive emotional stress in takotsubo syndrome. Eur Heart J. 2016;37:2823–9.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Murakami T, et al. Gender differences in patients with takotsubo cardiomyopathy: multi-center registry from Tokyo CCU Network. PLoS One. 2015;10:e0136655.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Tawakol A, et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet. 2017;389:834–45.PubMedCrossRefGoogle Scholar
  150. 150.
    Inoue N. Stress and atherosclerotic cardiovascular disease. J Atheroscler Thromb. 2014:1–11. https://doi.org/10.5551/jat.21709.
  151. 151.
    Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nat Rev Cardiol. 2012;9:360–70.PubMedCrossRefGoogle Scholar
  152. 152.
    Saban KL, Mathews HL, DeVon HA, Janusek LW. Epigenetics and social context: implications for disparity in cardiovascular disease. Aging Dis. 2014;5:346–55.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Cohen BE, Edmondson D, Kronish IM. State of the art review: depression, stress, anxiety, and cardiovascular disease. Am J Hypertens. 2015;28:1295–302.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Legault SE, Freeman MR, Langer A, Armstrong PW. Pathophysiology and time course of silent myocardial ischaemia during mental stress: clinical, anatomical, and physiological correlates. Br Heart J. 1995;73:242–9.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Strike PC, Steptoe A. Systematic review of mental stress-induced myocardial ischaemia. Eur Heart J. 2003;24:690–703.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Pimple P, et al. Association between anger and mental stress-induced myocardial ischemia. Am Heart J. 2015;169:115–21.e2.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Rozanski A, et al. Mental stress and the induction of silent myocardial ischemia in patients with coronary artery disease. N Engl J Med. 1988;318:1005–12.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Wei J, et al. Meta-analysis of mental stress-induced myocardial ischemia and subsequent cardiac events in patients with coronary artery disease. Am J Cardiol. 2014;114:187–92.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Bairey CN, Krantz DS, DeQuattro V, Berman DS, Rozanski A. Effect of beta-blockade on low heart rate-related ischemia during mental stress. J Am Coll Cardiol. 1991;17:1388–95.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Ramadan R, et al. Myocardial ischemia during mental stress: role of coronary artery disease burden and vasomotion. J Am Heart Assoc. 2013;2:e000321.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Spieker LE, et al. Mental stress induces prolonged endothelial dysfunction via endothelin-A receptors. Circulation. 2002;105:2817–20.PubMedCrossRefGoogle Scholar
  162. 162.
    Fleshner M. Stress-evoked sterile inflammation, danger associated molecular patterns (DAMPs), microbial associated molecular patterns (MAMPs) and the inflammasome. Brain Behav Immun. 2013;27:1–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Lugrin J, et al. Cutting edge: IL-1α is a crucial danger signal triggering acute myocardial inflammation during myocardial infarction. J Immunol. 2015;194:499–503.PubMedCrossRefGoogle Scholar
  164. 164.
    Roth L, et al. Chronic intermittent mental stress promotes atherosclerotic plaque vulnerability, myocardial infarction and sudden death in mice. Atherosclerosis. 2015;242:288–94.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Nichols M, Townsend N, Scarborough P, Rayner M. Trends in age-specific coronary heart disease mortality in the European Union over three decades: 1980–2009. Eur Heart J. 2013;34:3017–27.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Mehta PK, Wei J, Wenger NK. Ischemic heart disease in women: a focus on risk factors. Trends in Cardiovasc Med. 2015;25:140–51.CrossRefGoogle Scholar
  167. 167.
    Rossouw JE, Manson JE, Kaunitz AM, Anderson GL. Lessons learned from the Women’s Health Initiative trials of menopausal hormone therapy. Obstet Gynecol. 2013;121:172–6.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Mehta LS, et al. Acute myocardial infarction in women: a scientific statement from the American Heart Association. Circulation. 2016;133:916–47.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    D’Onofrio G, et al. Sex differences in reperfusion in young patients with ST-segment-elevation myocardial infarction: results from the VIRGO study. Circulation. 2015;131:1324–32.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Thurston RC, et al. Abuse and subclinical cardiovascular disease among midlife women: the study of women’s health across the nation. Stroke. 2014;45:2246–51.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Razzolini R, Dal Lin C. Gender differences in heart failure. Ital J Gender-Specific Med. 2015;1:15–20.Google Scholar
  172. 172.
    Kerkhof PLM, Li JK-J, Kresh JY, Heyndrickx GR. Left ventricular diastolic elastance is higher in women compared to men and elevated with betablockade. FASEB J. 2015;29:799.5.Google Scholar
  173. 173.
    Engel G. The need for a new medical model: a challenge for biomedicine. Science (80-). 1977;196:129–36.CrossRefGoogle Scholar
  174. 174.
    Fani Marvasti F, Stafford RS. From sick care to health care — reengineering prevention into the U.S. system. N Engl J Med. 2012;367:889–91.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Neuman J, Korenstein D, Ross JS, Keyhani S. Prevalence of financial conflicts of interest among panel members producing clinical practice guidelines in Canada and United States: cross sectional study. BMJ. 2011;343:d5621.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Giannoni A, et al. Do optimal prognostic thresholds in continuous physiological variables really exist? analysis of origin of apparent thresholds, with systematic review for peak oxygen consumption, ejection fraction and BNP. PLoS One. 2014;9:e105175.CrossRefGoogle Scholar
  177. 177.
    Smith R. Medical journals are an extension of the marketing arm of pharmaceutical companies. PLoS Med. 2005;2:e138.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Benjamin DK, et al. Safety and transparency of pediatric drug trials. Arch Pediatr Adolesc Med. 2009;163:1080–6.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Ryan TJ. Dr Jerome Kassirer’s book on the take: how medicine’s complicity with big business can endanger your health: worthy of comment. Circulation. 2005;111:2552–4.CrossRefGoogle Scholar
  180. 180.
    Rockey SJ, Collins FS. Managing financial conflict of interest in biomedical research. JAMA. 2010;303:2400–2.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Reddy VS, et al. Relationship between serum low-density lipoprotein cholesterol and in-hospital mortality following acute myocardial infarction (the lipid paradox). Am J Cardiol. 2015;115:557–62.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Cheng K-H, et al. Lipid paradox in acute myocardial infarction—the association with 30-day in-hospital mortality. Crit Care Med. 2015;43:1255–64.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Estruch R, Ros E, Salas-Salvado J, Covas M-I, Coreila D, Ards F, Gόmez-Gracia E, Ruiz-Gutierrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pinto X, Basora J, Munoz MA, Sorli JV, Martinez JA, Martinez-Gonzalez MA, for the P. S. I.-. Primary prevention of cardiovascular disease with a Mediterranean diet. NEJM. 2013;368:1279.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Dal Lin C, et al. Thoughts modulate the expression of inflammatory genes and may improve the coronary blood flow in patients after a myocardial infarction. J Tradit Complement Med. 2017. https://doi.org/10.1016/j.jtcme.2017.04.011.
  185. 185.
    Anderson RH, et al. Assessment of the helical ventricular myocardial band using standard echocardiography. Echocardiography. 2015;32:1601–2.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiac, Thoracic and Vascular SciencesUniversity of PadovaPadovaItaly
  2. 2.Laboratory of Translational Nutrition BiologyFederal Institute of Technology Zurich ETHZZurichSwitzerland
  3. 3.Center for Molecular CardiologyUniversity of Zurich and University Heart Center, Cardiology, University Hospital ZurichZurichSwitzerland

Personalised recommendations