Advertisement

Benchmarking Heart Rate Variability to Overcome Sex-Related Bias

  • Massimo Pagani
  • Roberto Sala
  • Mara Malacarne
  • Daniela Lucini
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1065)

Abstract

Since the seminal studies by Sayers (Ergonomics 16:17–32, 1973) and Akselrod et al. (Science 213:220–222, 1981) a few decades ago, it became clear that beat-by-beat oscillations in RR interval length (i.e. heart-rate variability [HRV]) contain information on underlying neural-control mechanisms based on the instantaneous balance between parasympathetic and sympathetic innervation. Over the years, the number of studies addressing HRV has increased markedly and now outnumbers 23,000. Despite such a large interest, there is still a continuing debate about interpretation of indices produced by computer analysis of HRV.

The main part of studies relies on spectral techniques to extract parameters that are linked to hidden information. The general idea is that these proxies of autonomic regulation can be useful to clinical applications in various conditions in which autonomic dysregulation may play a role. There are, however, serious shortcomings related to algorithms, interpretation, and the hidden value of individual indices. In particular, it appears that specific training is necessary to interpret the hidden informational value of HRV. This technical complexity represents a severe barrier to large-scale clinical applications. Moreover, important differences in HRV separate the sexes, and age plays an additional confounding role.

We present here a preliminary application of a novel unitary index of RR variability (Autonomic Nervous System Index of cardiac regulation) capable of providing information on the performance of autonomic regulation using a percentile rank position as projected on a large benchmark population. A summary of the underlying sympatho-vagal model is also presented.

Keywords

Heart-rate variability Autonomic regulation Beat-by-beat oscillations Parasympathetic innervation Sympathetic innervation Sympatho-vagal model Excitatory–inhibitory balance Sex-related bias 

References

  1. 1.
    Sacks O. The man who mistook his wife for a hat. New York: Summit Books; 1985.Google Scholar
  2. 2.
    Editorial. The soft science of medicine. Lancet. 2004;363(9417):1247.CrossRefGoogle Scholar
  3. 3.
    Hess WR. Nobel Lecture: The Central Control of the Activity of “Internal Organs”. Nobelprize.org.Nobel Media AB 2014. Web. 2016. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1949/hess-lecture.html
  4. 4.
    Langley JN. The autonomic nervous system (Pt. I). Cambridge: W. Heffer & Sons; 1921.Google Scholar
  5. 5.
    Burke RE. Sir Charles Sherrington’s the integrative action of the nervous system: a centenary appreciation. Brain. 2007;130(4):887–94.CrossRefPubMedGoogle Scholar
  6. 6.
    Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84(2):482–92.CrossRefPubMedGoogle Scholar
  7. 7.
    Warner HR, Russell RO Jr. Effect of combined sympathetic and vagal stimulation on heart rate in the dog. Circ Res. 1969;24:567–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Sayers BM. Analysis of heart rate variability. Ergonomics. 1973;16(1):17–32.CrossRefPubMedGoogle Scholar
  9. 9.
    Haken H. Synergetics: an introduction. Berlin: Springer Verlag; 1983.CrossRefGoogle Scholar
  10. 10.
    Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220–2.CrossRefPubMedGoogle Scholar
  11. 11.
    Schwartz PJ, Pagani M, Lombardi F, Malliani A, Brown AM. A cardiocardiac sympathovagal reflex in the cat. Circ Res. 1973;32(2):215–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59(2):178–93.CrossRefPubMedGoogle Scholar
  13. 13.
    Pagani M, Malliani A. Interpreting oscillations of muscle sympathetic nerve activity and heart rate variability. J Hypertens. 2000;18(s):1709–19.CrossRefPubMedGoogle Scholar
  14. 14.
    Mochizuki Y, Shinomoto S. Analog and digital codes in the brain. Phys Rev E. 2014;89(2):022705.CrossRefGoogle Scholar
  15. 15.
    Porta A, Guzzetti S, Montano N, et al. Entropy, entropy rate, and pattern classification as tools to typify complexity in short heart period variability series. IEEE Trans Biomed Eng. 2001;48(11):1282–91.CrossRefPubMedGoogle Scholar
  16. 16.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart-rate variability: standards of measurements, physiological interpretation and clinical use. Circulation. 1996;93(5):1043–65.CrossRefGoogle Scholar
  17. 17.
    Pagani M, Montano N, Porta A, et al. Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation. 1997;95(6):1441–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw Hill; 2000.Google Scholar
  19. 19.
    Massimini M, Porta A, Mariotti M, Malliani A, Montano N. Heart rate variability is encoded in the spontaneous discharge of thalamic somatosensory neurones in cat. J Physiol. 2000;526:387–96.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Voss A, Schroeder R, Heitmann A, Peters A, Perz S. Short-term heart rate variability—influence of gender and age in healthy subjects. PLoS One. 2015;10(3):e0118308.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pelliccia F, Kaski JC, Crea F, Camici PG. Pathophysiology of Takotsubo syndrome. Circulation. 2017;135(24):2426–41.CrossRefGoogle Scholar
  23. 23.
    Sala R, Malacarne M, Solaro N, Pagani M, Lucini D. A composite autonomic index as unitary metric for heart rate variability: a proof of concept. Eur J Clin Investig. 2017;47(3):241–9.CrossRefGoogle Scholar
  24. 24.
    Pomeranz B, Macaulay RJ, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Phys. 1985;248(1 Pt 2):H151–3.Google Scholar
  25. 25.
    Lucini D, Marchetti I, Spataro A, et al. Heart rate variability to monitor performance in elite athletes: criticalities and avoidable pitfalls. Int J Cardiol. 2017;240:307–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Beissner F, Meissner K, Bar KJ, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci. 2013;33(25):10503–11.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Badilini F, Pagani M, Porta A. Heartscope: a software tool addressing autonomic nervous system regulation. Comput Cardiol. 2005;32:259–62.Google Scholar
  28. 28.
    Saary MJ. Radar plots: a useful way for presenting multivariate health care data. J Clin Epidemiol. 2008;61(4):311–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Sala R, Spataro A, Malacarne M, et al. Discriminating between two autonomic profiles related to posture in Olympic athletes. Eur J Appl Physiol. 2016;116(4):815–22.CrossRefPubMedGoogle Scholar
  30. 30.
    Engel BT. Psychosomatic medicine, behavioral medicine, just plain medicine. Psychosom Med. 1986;48(7):466–79.CrossRefPubMedGoogle Scholar
  31. 31.
    Eckberg DL. Sympathovagal balance: a critical appraisal. Circulation. 1997;96(9):3224–32.CrossRefPubMedGoogle Scholar
  32. 32.
    Lucini D, Solaro N, Pagani M. Autonomic differentiation map: a novel statistical tool for interpretation of Heart Rate Variability. Frontiers Physiol. 2018;9:401Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Massimo Pagani
    • 1
  • Roberto Sala
    • 1
  • Mara Malacarne
    • 1
  • Daniela Lucini
    • 1
  1. 1.BIOMETRA, University of MilanMilanItaly

Personalised recommendations