Dynamic Control of 6-DOF AUVs and Fault Detection/Tolerance Strategies

Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 123)

Abstract

Control of UVMSs require full-DOF control of the vehicle, cruise vehicles with rudder and stern are not suitable to hold a manipulator arm for their incapacity to counteract the interaction forces with the arm itself. For this reason the following chapter restricts the discussion to the problem of controlling an underwater vehicle in 6-DOFs.

References

  1. 1.
    Pioneering deep-sea robot lost at sea. http://www.whoi.edu/main/news-releases/2010?tid=3622&cid=70487. Accessed 2 Jan 2017
  2. 2.
    Y.K. Alekseev, V.V. Kostenko, A.Y. Shumsky, Use of identification and fault diagnostic methods for underwater robotics, in OCEANS’94.’Oceans Engineering for Today’s Technology and Tomorrow’s Preservation (IEEE, 1994), pp. 489–494Google Scholar
  3. 3.
    A. Alessandri, M. Caccia, G. Veruggio, A model-based approach to fault diagnosis in unmanned underwater vehicles, in OCEANS’98 Conference Proceedings, vol. 2 (IEEE, 1998), pp. 825–829Google Scholar
  4. 4.
    A. Alessandri, M. Caccia, G. Veruggio, Fault detection of actuator faults in unmanned underwater vehicles. Control Eng. Pract. 7(3), 357–368 (1999)CrossRefGoogle Scholar
  5. 5.
    A. Alessandri, A. Gibbons, A.J. Healey, G. Veruggio, Robust model-based fault diagnosis for unmanned underwater vehicles using sliding mode-observers, in Proceedings International Symposium Unmanned Untethered Submersible Technology (Durham, New Hampshire, 1999), pp. 352–359Google Scholar
  6. 6.
    G. Antonelli, A new adaptive control law for the Phantom ROV, in 7th IFAC Symposium on Robot Control (Wroclaw, 2003), pp. 569–574Google Scholar
  7. 7.
    G. Antonelli, On the use of adaptive/integral actions for 6-degrees-of-freedom control of autonomous underwater vehicles. IEEE J. Oceanic Eng. 32(2), 300–312 (2007)CrossRefGoogle Scholar
  8. 8.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, A novel adaptive control law for autonomous underwater vehicles, in Proceedings 2001 IEEE International Conference on Robotics and Automation (Seoul, 2001), pp. 447–451Google Scholar
  9. 9.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, On the use of integral control actions for autonomous underwater vehicles, in 2001 European Control Conference (Porto, 2001)Google Scholar
  10. 10.
    G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, A novel adaptive control law for underwater vehicles. IEEE Trans. Control Syst. Technol. 11(2), 221–232 (2003)CrossRefGoogle Scholar
  11. 11.
    G. Antonelli, S. Chiaverini, N. Sarkar, M. West, Adaptive control of an autonomous underwater vehicle. experimental results on ODIN, in IEEE International Symposium on Computational Intelligence in Robotics and Automation (Monterey, 1999), pp. 64–69Google Scholar
  12. 12.
    G. Antonelli, S. Chiaverini, N. Sarkar, M. West, Adaptive control of an autonomous underwater vehicle: experimental results on ODIN. IEEE Trans. Control Syst. Technol. 9(5), 756–765 (2001)CrossRefGoogle Scholar
  13. 13.
    S. Arimoto, Control Theory of Nonlinear Mechanical Systems (Oxford University Press, Inc., Oxford, 1996)Google Scholar
  14. 14.
    P.S. Babcock IV, J.J. Zinchuk, Fault-tolerant design optimization: Application to an autonomous underwater vehicle navigation system, in Proceedings of the (1990) Symposium on Autonomous Underwater Vehicle Technology, 1990. AUV’90 (IEEE, Washington DC, 1990), pp. 34–43Google Scholar
  15. 15.
    D. Barnett, S. McClaran, E. Nelson, M. McDermott, G. Williams, Architecture of the Texas A&M autonomous underwater vehicle controller, in Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, 1996. AUV’96 (Monterey, IEEE, 1996), pp. 231–237Google Scholar
  16. 16.
    G. Beale, J. Kim, A robust approach to reconfigurable control, in 5th IFAC Conference on Manoeuvring and Control of Marine Craft (Aalborg, 2000), pp. 197–202Google Scholar
  17. 17.
    J.G. Bellingham, C.A. Goudey, T.R. Consi, J.W. Bales, D.K. Atwood, J.J. Leonard, C. Chryssostomidis, A second generation survey AUV, in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology, 1994. AUV’94 (IEEE, Cambridge, 1994), pp. 148–155Google Scholar
  18. 18.
    R. Bono, Ga. Bruzzone, M. Caccia, ROV actuator fault diagnosis through servo-amplifiers’ monitoring: an operational experience, in OCEANS’99 MTS/IEEE. Riding the Crest into the 21st Century, vol. 3 (IEEE, 1999), pp. 1318–1324Google Scholar
  19. 19.
    M.P. Brito, G. Griffiths, A Markov chain state transition approach to establishing critical phases for AUV reliability. IEEE J. Oceanic Eng. 36(1), 139–149 (2011)CrossRefGoogle Scholar
  20. 20.
    R.A. Brooks, A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)CrossRefGoogle Scholar
  21. 21.
    M. Caccia, R. Bono, Ga. Bruzzonea, Gi Bruzzone, E. Spirandelli, G. Veruggio, Experiences on actuator fault detection, diagnosis and accomodation for ROVs, in International Symposium on Unmanned Untethered Submersible Technology (Durham, 2001)Google Scholar
  22. 22.
    N.A. Chaturvedi, A.K. Sanyal, N.H. McClamroch, Rigid-body attitude control. IEEE Control Syst. Mag. 31(3), 30–51 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    H.T. Choi, A. Hanai, S.K. Choi, J. Yuh, Development of an underwater robot, ODIN-III, in 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.(IROS 2003), Proceedings, vol. 1 (IEEE, 2003), pp. 836–841Google Scholar
  24. 24.
    S.K. Choi, J. Yuh, Experimental study on a learning control system with bound estimation for underwater robots. Auton. Robot. 3(2), 187–194 (1996)CrossRefGoogle Scholar
  25. 25.
    G. Conte, A. Serrani, Robust lyapunov-based design for autonomous underwater vehicles, in Proceedings of the 5th IFAC Symposium on Robot Control (1997), pp. 321–326Google Scholar
  26. 26.
    M.L. Corradini, A. Monteriù, G. Orlando, An actuator failure tolerant control scheme for an underwater remotely operated vehicle. IEEE Trans. Control Syst. Technol. 19(5), 1036–1046 (2011)CrossRefGoogle Scholar
  27. 27.
    M.L. Corradini, G. Orlando, A discrete adaptive variable-structure controller for MIMO systems, and its application to an underwater ROV. IEEE Trans. Control Syst. Technol. 5(3), 349–359 (1997)CrossRefGoogle Scholar
  28. 28.
    R. Cristi, F. Papoulias, A. Healey, Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE J. Oceanic Eng. 15(3), 152–160 (1990)CrossRefGoogle Scholar
  29. 29.
    J.P.V.S. Da Cunha, R.R. Costa, L. Hsu, Design of a high performance variable structure position control of ROVs. IEEE J. Oceanic Eng. 20(1), 42–55 (1995)CrossRefGoogle Scholar
  30. 30.
    R. Dearden, J. Ernits, Automated fault diagnosis for an autonomous underwater vehicle. IEEE J. Oceanic Eng. (2013)Google Scholar
  31. 31.
    X. Dermin, G. Lei, Wavelet transform and its application to autonomous underwater vehicle control system fault detection, in Proceedings of the 2000 International Symposium on Underwater Technology, 2000. UT 00 (IEEE, Tokyo, 2000), pp. 99–104Google Scholar
  32. 32.
    B. Deuker, M. Perrier, B. Amy, Fault-diagnosis of subsea robots using neuro-symbolic hybrid systems, in OCEANS’98 Conference Proceedings (IEEE, Nice, 1998), pp. 830–834Google Scholar
  33. 33.
    T. Falkenberg, R.T. Gregersen, M. Blanke, Navigation system fault diagnosis for underwater vehicle. 47, 9654–9660 (2014). ElsevierGoogle Scholar
  34. 34.
    J. Farrell, T. Berger, B.D. Appleby, Using learning techniques to accommodate unanticipated faults. IEEE Control Syst. 13(3), 40–49 (1993)CrossRefGoogle Scholar
  35. 35.
    J. Ferguson, The Theseus autonomous underwater vehicle. Two successful missions, in Proceedings of the 1998 International Symposium on Underwater Technology, 1998 (IEEE, Tokyo, 1998), pp. 109–114Google Scholar
  36. 36.
    J. Ferguson, A. Pope, B. Butler, R. Verrall, Theseus AUV-two record breaking missions. Sea Technol. 40(2), 65–70 (1999)Google Scholar
  37. 37.
    O.E. Fjellstad, T.I. Fossen, Position and attitude tracking of AUV’s: a quaternion feedback approach. IEEE J. Oceanic Eng. 19(4), 512–518 (1994)CrossRefGoogle Scholar
  38. 38.
    O.E. Fjellstad, T.I. Fossen, Singularity-free tracking of unmanned underwater vehicles in 6 DOF, in Proceedings of the 33rd IEEE Conference on Decision and Control, 1994, vol. 2 (IEEE, 1994), pp. 1128–1133Google Scholar
  39. 39.
    T. Fossen, Guidance and Control of Ocean Vehicles (Chichester, 1994)Google Scholar
  40. 40.
    T. Fossen, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (Marine Cybernetics, Trondheim, 2002)Google Scholar
  41. 41.
    T. Fossen, J.G. Balchen, et al., The NEROV autonomous underwater vehicle, in Proc. Conference Oceans 91 (Citeseer, Honolulu, 1991)Google Scholar
  42. 42.
    T. Fossen, S.I. Sagatun, Adaptive control of nonlinear systems: a case study of underwater robotic systems. J. Robotic Syst. 8(3), 393–412 (1991)CrossRefMATHGoogle Scholar
  43. 43.
    T.I. Fossen, T.A. Johansen, A survey of control allocation methods for ships and underwater vehicles, in 14th Mediterranean Conference on Control and Automation, 2006. MED’06 (IEEE, 2006), pp. 1–6Google Scholar
  44. 44.
    A.S. Gadre, D.J. Stilwell, A complete solution to underwater navigation in the presence of unknown currents based on range measurements from a single location, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, (IROS 2005) (IEEE, 2005), pp. 1420–1425Google Scholar
  45. 45.
    K. Hamilton, D. Lane, N. Taylor, K. Brown, Fault diagnosis on autonomous robotic vehicles with RECOVERY: an integrated heterogeneous-knowledge approach, in IEEE International Conference on Robotics and Automation, 2001, Proceedings 2001 ICRA (IEEE, San Francisco, 2001), pp. 3232–3237Google Scholar
  46. 46.
    A. Healey, D. Lienard, Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Oceanic Eng. 18(3), 327–339 (1993)CrossRefGoogle Scholar
  47. 47.
    A. Healey, S.M. Rock, S. Cody, D. Miles, J.P. Brown, Toward an improved understanding of thruster dynamics for underwater vehicles. IEEE J. Oceanic Eng. 20(4), 354–361 (1995)CrossRefGoogle Scholar
  48. 48.
    A.J. Healey, A neural network approach to failure diagnostics for underwater vehicles, in Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology, 1992. AUV’92 (IEEE, Washington D.C, 1992), pp. 131–134Google Scholar
  49. 49.
    A.J. Healey, Analytical redundancy and fuzzy inference in AUV fault detection and compensation, in Proceedings Oceanology 1998 (Brighton, 1998), pp. 45–50,Google Scholar
  50. 50.
    A.J. Healey, F. Bahrke, J. Navarrete, Failure diagnostics for underwater vehicles: A neural network approach, in IFAC Conference on Manoeuvring and Control of Marine Craft (Aalborg, 1992), pp. 293–306Google Scholar
  51. 51.
    A.J. Healey, D.B. Marco, Experimental verification of mission planning by autonomous mission execution and data visualization using the NPS AUV II, in Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology, 1992. AUV’92 (IEEE, Washington D.C, 1992), pp. 65–72Google Scholar
  52. 52.
    W. Hornfeld, E. Frenzel, Intelligent AUV on-board health monitoring software (INDOS), in OCEANS’98 Conference Proceedings, vol. 2 (IEEE, Nice, 1998), pp. 815–819Google Scholar
  53. 53.
    L. Hsu, R.R. Costa, F. Lizarrade, J.P.V. Soares da Cunha, Dynamic positioning of remotely operated underwater vehicles. IEEE Robot. Autom. Mag. 7(3), 21–31 (2000)CrossRefGoogle Scholar
  54. 54.
    B. Hutchison, Velocity aided inertial navigation, in Proc. Sensor Nav. Issues for UUVs, CS Draper Lab (1991)Google Scholar
  55. 55.
    J. Kim, G. Beale, Fault detection and classification in underwater vehicle using the \(t^2\) statistic, in 9th Mediterranean Conference on Control and AutomationGoogle Scholar
  56. 56.
    T.W. Kim, J. Yuh, A novel neuro-fuzzy controller for autonomous underwater vehicles, in IEEE International Conference on Robotics and Automation, 2001, Proceedings 2001 ICRA, vol. 3 (IEEE, 2001), pp. 2350–2355Google Scholar
  57. 57.
    W.J. Kirkwood, D. Gashler, H. Thomas, T.C. O’Reilly, R. McEwen, N. Tervalon, F. Shane, D. Au, M. Sibenac, T. Konvalina, et al., Development of a long endurance autonomous underwater vehicle for ocean science exploration, in OCEANS, 2001. MTS/IEEE Conference and Exhibition (IEEE, Honolulu, 2001), pp. 1504–1512Google Scholar
  58. 58.
    K. Hamiltonand, D.M. Lane, K.E. Brown, J. Evans, N.K. Taylor, An integrated diagnostic architecture for autonomous underwater vehicles: research articles. J. Field Robot. 24(6), 497–526 (2007)CrossRefGoogle Scholar
  59. 59.
    C.S.G. Lee, J.S. Wang, J. Yuh, Self-adaptive neuro-fuzzy systems for autonomous underwater vehicle control. Adv. Robot. 15(5), 589–608 (2001)CrossRefGoogle Scholar
  60. 60.
    R.S. Mangoubi, B.D. Appleby, G.C. Verghese, W.E. Vander Velde, A robust failure detection and isolation algorithm, in Proceedings of the 34th IEEE Conference on Decision and Control, 1995 (IEEE, New Orleans, 1995), pp. 2377–2382Google Scholar
  61. 61.
    G. Marani, S.K. Choi, J. Yuh, Real-time center of buoyancy identification for optimal hovering in autonomous underwater intervention. Intel. Serv. Robot. 3(3), 175–182 (2010)CrossRefGoogle Scholar
  62. 62.
    D. Marco, A. Healey, Command, control, and navigation experimental results with the NPS ARIES AUV. IEEE J. Oceanic Eng. 26(4), 466–476 (2001)CrossRefGoogle Scholar
  63. 63.
    S. Martin, L.L. Whitcomb, Nonlinear model-based tracking control of underwater vehicles with three degree-of-freedom fully coupled dynamical plant models: theory and experimental evaluation. IEEE Trans. Control Syst. Technol. (2017)Google Scholar
  64. 64.
    S.C. Martin, L.L. Whitcomb, Preliminary experiments in fully actuated model based control with six degree-of-freedom coupled dynamical plant models for underwater vehicles, in IEEE International Conference on Robotics and Automation, 2013, Proceedings. ICRA’13 (IEEE, 2013), pp. 4606–4613Google Scholar
  65. 65.
    E. Miguelaez, P. Patron, K.E. Brown, Y.R. Petillot, D.M. Lane, Semantic knowledge-based framework to improve the situation awareness of autonomous underwater vehicles. IEEE Trans. Knowl. Data Eng. 23(5), 759–773 (2011)CrossRefGoogle Scholar
  66. 66.
    E. Nelson, S. McClaran, D. Barnett, Development and validation of the Texas A&M university autonomous underwater vehicle controller, Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, 1996. AUV’96 (IEEE, Monterey, 1996), pp. 203–208Google Scholar
  67. 67.
    J. Nie, J. Yuh., E. Kardash, T. Fossen, On-board sensor-based adaptive control of small UUVS in very shallow water. Int. J. Adapt. Control Signal Process. 14(4), 441–452 (2000)Google Scholar
  68. 68.
    A. Orrick, M. McDermott, D. Barnett, E. Nelson, G. Williams, Failure detection in an autonomous underwater vehicle, in Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, 1994. AUV’94 (IEEE, Cambridge, 1994), pp. 377–382Google Scholar
  69. 69.
    D. Perrault, M. Nahon, Fault-tolerant control of an autonomous underwater vehicle, in OCEANS’98 Conference Proceedings (IEEE, Nice, 1998), pp. 820–824Google Scholar
  70. 70.
    T.K. Podder, G. Antonelli, N. Sarkar, Fault tolerant control of an autonomous underwater vehicle under thruster redundancy: simulations and experiments, in Proceedings 2000 IEEE International Conference on Robotics and Automation (San Francisco, 2000), pp. 1251–1256Google Scholar
  71. 71.
    T.K. Podder, G. Antonelli, N. Sarkar, An experimental investigation into the fault-tolerant control of an autonomous underwater vehicle. J. Adv. Robot. 15(5), 501–520 (2001)CrossRefGoogle Scholar
  72. 72.
    T.K. Podder, N. Sarkar, Fault tolerant decomposition of thruster forces of an autonomous underwater vehicle, in Proceedings 1998 IEEE International Conference on Robotics and Automation (Leuven, 1998), pp. 84–89,Google Scholar
  73. 73.
    T.K. Podder, N. Sarkar, Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy. Robot. Auton. Syst. 34(1), 39–52 (2001)CrossRefGoogle Scholar
  74. 74.
    N. Ranganathan, M.I. Patel, R. Sathyamurthy, An intelligent system for failure detection and control in an autonomous underwater vehicle. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 31(6), 762–767 (2001)CrossRefGoogle Scholar
  75. 75.
    H.E. Rauch, Intelligent fault diagnosis and control reconfiguration. IEEE Control Syst. 14(3), 6–12 (1994)CrossRefGoogle Scholar
  76. 76.
    J.S. Riedel, Shallow water stationkeeping of an autonomous underwater vehicle: the experimental results of a disturbance compensation controller, in OCEANS 2000 MTS/IEEE Conference and Exhibition, vol. 2 (IEEE, 2000), pp. 1017–1028Google Scholar
  77. 77.
    J.S. Riedel, A.J. Healey, Shallow water station keeping of AUVs using multi-sensor fusion for wave disturbance prediction and compensation, in OCEANS’98 Conference Proceedings, vol. 2 (IEEE, 1998), pp. 1064–1068Google Scholar
  78. 78.
    N. Sarkar, T.K. Podder, G. Antonelli, Fault accommodating thruster force allocation of an AUV considering thruster redundancy and saturation. IEEE Trans. Robot. Autom. 18(2), 223–233 (2002)CrossRefGoogle Scholar
  79. 79.
    A.C. Schultz, J.J. Grefenstette, K.A. De Jong, Adaptive testing of controllers for autonomous vehicles, in Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology, 1992. AUV’92 (IEEE, Washington, DC, 1992), pp. 158–164Google Scholar
  80. 80.
    B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and Control (Springer, Berlin, 2009)Google Scholar
  81. 81.
    J.J.E. Slotine, W. Li, On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)CrossRefGoogle Scholar
  82. 82.
    D.A. Smallwood, L.L. Whitcomb, Toward model based dynamic positioning of underwater robotic vehicles, in OCEANS, 2001. MTS/IEEE Conference and Exhibition, vol. 2 (IEEE, 2001), pp. 1106–1114Google Scholar
  83. 83.
    D.A. Smallwood, L.L. Whitcomb, The effect of model accuracy and thruster saturation on tracking performance of model based controllers for underwater robotic vehicles: experimental results, in IEEE International Conference on Robotics and Automation, 2002, Proceedings, ICRA’02, vol. 2 (IEEE, Washington, DC, 2002), pp. 1081–1087Google Scholar
  84. 84.
    D.A. Smallwood, L.L. Whitcomb, Model-based dynamic positioning of underwater robotic vehicles: theory and experiment. IEEE J. Oceanic Eng. 29(1), 169–186 (2004)CrossRefGoogle Scholar
  85. 85.
    R.P. Stokey, Software design techniques for the man machine interface to a complex underwater vehicle, in OCEANS’94.’Oceans Engineering for Today’s Technology and Tomorrow’s Preservation.’Proceedings (IEEE, Brest, 1994), pp. 119–124Google Scholar
  86. 86.
    Y.C. Sun, C.C. Cheah, Adaptive setpoint control for autonomous underwater vehicles, in Proceedings of the 42nd IEEE Conference on Decision and Control, 2003, vol. 2 (IEEE, 2003), pp. 1262–1267Google Scholar
  87. 87.
    G. Tacconi, A. Tiano, Reconfigurable control of an autonomous underwater vehicle, in Proceedings of the 6th International Symposium on Unmanned Untethered Submersible Technology, 1989 (IEEE, 1989), pp. 486–493Google Scholar
  88. 88.
    M. Takai, T. Fujii, T. Ura, A model based diagnosis system for autonomous underwater vehicles using artifical neural networks, in Proceedings International Symposium Unmanned Untethered Submersible Technology (Durham, 1995), pp. 243–252Google Scholar
  89. 89.
    G. Tong, Z. Jimao, A rapid reconfiguration strategy for UUV control, in Proceedings of the 1998 International Symposium on Underwater Technology, 1998 (IEEE, Tokyo, 1998), pp. 478–483Google Scholar
  90. 90.
    L. Whitcomb, Underwater robotics: out of the research laboratory and into the field, in IEEE International Conference on Robotics and Automation, 2000, Proceedings, ICRA’00 (IEEE, 2000), pp. 709–716Google Scholar
  91. 91.
    K.C. Yang, J. Yuh, S.K. Choi, Experimental study of fault-tolerant system design for underwater robots, in Proceedings of the 1998 IEEE International Conference on Robotics and Automation, 1998, vol. 2 (IEEE, 1998), pp. 1051–1056Google Scholar
  92. 92.
    K.C. Yang, J. Yuh, S.K. Choi, Fault-tolerant system design of an autonomous underwater vehicle ODIN: an experimental study. Int. J. Syst. Sci. 30(9), 1011–1019 (1999)CrossRefMATHGoogle Scholar
  93. 93.
    A. Yavnai, Architecture for an autonomous reconfigureable intelligent control system (ARICS), in Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, 1996. AUV’96 (IEEE, Monterey, 1996), pp. 238–245Google Scholar
  94. 94.
    J. Yuh, Modeling and control of underwater robotic vehicles. IEEE Trans. Syst. Man Cybern. 20(6), 1475–1483 (1990)CrossRefGoogle Scholar
  95. 95.
    J. Yuh, Learning control for underwater robotic vehicles. IEEE Control Syst. 14(2), 39–46 (1994)CrossRefGoogle Scholar
  96. 96.
    J. Yuh, K.V. Gonugunta, Learning control of underwater robotic vehicles, in IEEE International Conference on Robotics and Automation, 1993. Proceedings. ICRA’93, vol. 1 (IEEE, 1993), pp. 106–111Google Scholar
  97. 97.
    J. Yuh, J. Nie, C.S.G. Lee, Experimental study on adaptive control of underwater robots, in Proceedings of the 1999 IEEE International Conference on Robotics and Automation, 1999, (IEEE, 1999), pp. 393–398Google Scholar
  98. 98.
    J. Yuh, M. West, Underwater robotics. Adv. Robot. 15(5), 609–639 (2001)CrossRefGoogle Scholar
  99. 99.
    S. Zhao, J. Yuh, Experimental study on advanced underwater robot control. IEEE Trans. Rob. 21(4), 695–703 (2005)CrossRefGoogle Scholar
  100. 100.
    X. Zheng, Layered control of a practical AUV, in Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology, 1992. AUV’92 (IEEE, Washington D.C, 1992), pp. 142–147,Google Scholar
  101. 101.
    W.H. Zhu, Virtual Decomposition Control: Toward Hyper Degrees of Freedom Robots, vol. 60 (Springer, Berlin, 2010)Google Scholar
  102. 102.
    W.H. Zhu, T. Lamarche, E. Dupuis, D. Jameux, P. Barnard, G. Liu, Precision control of modular robot manipulators: the VDC approach with embedded FPGA. IEEE Trans. Robot. (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Elettrica e dell’InformazioneUniversità di Cassino e Lazio MeridionaleCassinoItaly

Personalised recommendations