Advertisement

Zooplankton Communities of the Argentine Continental Shelf (SW Atlantic, ca. 34°–55°S), An Overview

  • Georgina D. Cepeda
  • Brenda Temperoni
  • Marina E. Sabatini
  • María D. Viñas
  • Carla M. Derisio
  • Betina A. Santos
  • Julieta C. Antacli
  • Luciano N. Padovani
Chapter

Abstract

A profuse literature related to the ecology of the Argentine continental shelf has been produced in the last four decades, documenting its biological richness and high productivity. Distinctive environmental characteristics define particular systems along and across the shelf, which in all cases are inhabited by mammal, bird, fish and cephalopod species in all life history stages, either as spawning, mating, nursery or juvenile grounds or just for adult feeding. At the productive base of these systems, zooplankton certainly plays a crucial role. This paper reviews the available information on zooplankton diversity and ecology for this huge region in the Southwest Atlantic Ocean, with the focus primarily upon copepods and secondarily on hyperiid amphipods and euphausiids. We describe general aspects of biogeographic zonation and diversity for the entire shelf, with emphasis on key zooplankton species. Then, we consider the structure and dynamics of the communities in relation to water masses, frontal areas and the overall circulation, specifically for (i) the northern shelf (34°–41°S), (ii) the Valdés frontal system over the northern Patagonian shelf (41°–45°S) and (iii) the southern Patagonian shelf (47°–55°S). We finally go over the open questions and prospects for the future work on zooplankton in the region.

Keywords

Copepods Hyperiid amphipods Euphausiids Diversity patterns Community patterns Southwest Atlantic Ocean 

Notes

Acknowledgements

We would like to express our gratitude to the countless scientists, technicians and research vessel crews of INIDEP and CONICET who have for 50 years helped build our present understanding of zooplankton communities in the ACS. Their effort, enthusiasm and expertise are the basis of the results reported here. We would also like to acknowledge the contributions by many colleagues who, for reasons of space limitations, have not been referenced in these pages. We are grateful in particular to Gustavo Álvarez Colombo, Roxana Di Mauro, Nora Fernández Aráoz and Marina Marrari for kindly providing their data for the zooplankton datasets assembled throughout this review. Special thanks must be given to the heads of the several assessment groups at INIDEP for receiving and helping plankton researchers on board their stock assessment cruises. Also, the facilities at INIDEP and numerous grants from CONICET and the Universidad Nacional de Mar del Plata have been essential for the completion of our work. This is INIDEP contribution No2099.

References

  1. Aguirre GE, Capitanio FL, Lovrich GA (2012) Seasonal variability of mesozooplankton in coastal sub-Antarctic waters (Beagle Channel). Mar Biol Res 8(4):341–353CrossRefGoogle Scholar
  2. Angelescu V (1982) Ecología trófica de la anchoíta del Mar Argentino (Engraulidae, Engraulis anchoita). Parte II. Alimentación, comportamiento y relaciones tróficas en el ecosistema. Ser Contrib Inst Nac Invest Desarr Pesq 409, 83 ppGoogle Scholar
  3. Angelescu VA, Prenski LB (1987) Ecología trófica de la merluza común del Mar Argentino (Merlucciidae, Merluccius hubbsi). Parte 2. Dinámica de la alimentación analizada sobre la base de las condiciones ambientales, la estructura y las evaluaciones de los efectivos en su área de distribución. Ser Contrib Inst Nac Invest Desarr Pesq 561, 205 ppGoogle Scholar
  4. Antacli JC, Hernández D, Sabatini ME (2010) Estimating copepods’ abundance with paired nets: implications of mesh size for population studies. J Sea Res 63:71–77CrossRefGoogle Scholar
  5. Antacli JC, Sabatini ME, Silva RI (2014a) Feeding and reproductive responses of the copepods Drepanopus forcipatus and Calanus australis to ambient food limitation during late summer over the southern Patagonian shelf (Argentina, 47°–55°S). Braz J Oceanogr 62:295–314CrossRefGoogle Scholar
  6. Antacli JC, Hernández D, Sabatini ME (2014b) First report on the contribution of small sized species to the copepod community structure of the southern Patagonian shelf (Argentina, 47°–55°S). Sci Mar 78:17–26CrossRefGoogle Scholar
  7. Baldoni A, Molinari GN, Reta R et al (2015) Atlas de temperatura y salinidad de la plataforma continental del Atlántico Sudoccidental: períodos cálido y frío. Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del PlataGoogle Scholar
  8. Belleggia M, Figueroa DE, Irusta G et al (2014) Spatio-temporal and ontogenetic changes in the diet of the Argentine hake Merluccius hubbsi. J Mar Biol Assoc 94(8):1701–1710CrossRefGoogle Scholar
  9. Björnberg T (1981) Copepoda. In: Boltovskoy D (ed) Atlas del Zooplancton del Atlántico Sudoccidental y Métodos de Trabajo con el Zooplancton Marino. Publicaciones Especiales INIDEP, Mar del Plata, pp 587–679Google Scholar
  10. Bradford-Grieve JM (1994) Pelagic Calanoid Copepoda: Megalanidae, Calanidae, Paracalanidae, Mecynoceridae, Eucalanidae, Spinocalanidae, Clausocalanidae. NZ Oceanogr Inst Mem 102:1–160Google Scholar
  11. Bradford-Grieve JM, Markhaseva EL, Rocha CEF et al (1999) Copepoda. In: Boltovskoy D (ed) South Atlantic Zooplankton. Backhuys Publishers, Leiden, pp 869–1098Google Scholar
  12. Boltovskoy D (ed) (1999) South Atlantic Zooplankton. Backhuys Publishers, LeidenGoogle Scholar
  13. Boltovskoy D, Correa NM, Boltovskoy A (2003) Marine zooplanktonic diversity: a view from the South Atlantic. Oceanol Acta 25:271–278CrossRefGoogle Scholar
  14. Boltovskoy D, Correa NM (2008) Zooplancton: biogeografía y diversidad. In: Estado de Conservación del Mar Patagónico y Áreas de Influencia. Publicación del Foro, Puerto Madryn. Available at: http://www.marpatagonico.org
  15. Brodsky KA (1959) On the phylogenetic relationship of certain species of Calanus (Copepoda) from the northern and southern hemispheres. Zool J Acad Sci URSS 38:1537–1553Google Scholar
  16. Brodsky KA (1961) Comparison of Calanus species (Copepoda) from the southern and northern hemispheres. New Zeal Ocean Inst Contr 95:1–22Google Scholar
  17. Bucklin A, Frost BW, Bradford-Grieve J et al (2003) Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Mar Biol 142:333–343CrossRefGoogle Scholar
  18. Bucklin A, Nishida S, Schnack-Schiel S et al (2010) A census of zooplankton of the global ocean. In: McIntyre AD (ed) Life in the World’s oceans. Diversity, distribution, and abundance. Blackwell Publishing, Oxford, pp 247–262CrossRefGoogle Scholar
  19. Carreto JI, Lasta ML, Negri RM et al (1981a) Los fenómenos de marea roja y toxicidad de moluscos bivalvos en el Mar Argentino. Contr Inst Nac Invest Desarr Pesq 399. 89 ppGoogle Scholar
  20. Carreto JI, Negri RM, Benavides HR (1981b) Fitoplancton, pigmentos y nutrientes. Resultados campañas III y IV de B/I “Shinkai Maru” 1978. In: Angelescu V (ed) Campañas de investigación pesquera en el Mar Argentino, años 1978 y 1979. Ser Contrib Inst Nac Invest Desarr Pesq 399, 89 ppGoogle Scholar
  21. Carreto JI, Lutz VA, Carignan MO et al (1995) Hydrography and chlorophyll a in a transect from the coast to the shelf-break in the Argentinean Sea. Cont Shelf Res 15:315–336CrossRefGoogle Scholar
  22. Carreto JI, Carignan MO, Montoya NG et al (2007) Ecología del fitoplancton en los sistemas frontales del Mar Argentino. In: Sánchez RP, Bezzi SI (eds) El Mar Argentino y sus recursos pesqueros, 5. El ecosistema marino. Publicaciones Especiales INIDEP, Mar del Plata, pp 11–31Google Scholar
  23. Cepeda GC (2013) Sistemática molecular, distribución y dinámica poblacional de las especies de Oithona (Copepoda, Cyclopoida) en diversos sectores costeros del Mar Argentino. Dissertation, Universidad Nacional de Mar del PlataGoogle Scholar
  24. Cepeda GC, Blanco-Bercial L, Bucklin A et al (2012a) Molecular systematic of three species of Oithona (Copepoda, Cyclopoida) from the Atlantic Ocean: comparative analysis using 28S rDNA. PLoS One 7(4):1–7CrossRefGoogle Scholar
  25. Cepeda GC, Di Mauro R, Martos P et al (2012b) A section-sampling design to assess copepods and cladocerans distribution patterns in a highly complex hydrographic region (SW Atlantic Ocean, 34–41°S): insights for a new time series? Braz J Oceanogr 60(3):381–390CrossRefGoogle Scholar
  26. Cepeda GC, Di Mauro R, Hozbor MC et al (2015) Spatial variation in life-history traits of Oithona spp. in a shallow temperate estuarine system (Río de la Plata, south-west Atlantic) during spring. Mar Freshw Res 66(9):795–804CrossRefGoogle Scholar
  27. Cepeda GC, Sabatini ME, Scioscia CL et al (2016) On the uncertainty beneath the name Oithona similis Claus, 1866 (Copepoda, Cyclopoida). Zookeys 552:1–15CrossRefGoogle Scholar
  28. Ciechomski JD, Weiss G (1974) Estudios sobre la alimentación de larvas de la merluza Merluccius merluccius hubbsi y de la anchoita Engraulis anchoita en el mar. Physis 33(86):199–208Google Scholar
  29. Derisio C (2012) El rol del frente de mareas de Península Valdés en el control de la comunidad zooplanctónica. Dissertation, Universidad Nacional de Mar del PlataGoogle Scholar
  30. Derisio C, Braverman M, Gaitán E et al (2014a) The turbidity front as a habitat for Acartia tonsa (Copepoda) in the Río de la Plata, Argentina–Uruguay. J Sea Res 85:197–204CrossRefGoogle Scholar
  31. Derisio C, Alemany D, Acha EM et al (2014b) Influence of a tidal front on zooplankton abundance, assemblages and life histories in Península Valdés, Argentina. ICES J Mar Sci 139:475–482Google Scholar
  32. Dogliotti AI, Lutz VA, Segura V (2014) Estimation of primary production in the southern Argentine continental shelf and shelf-break regions using field and remote sensing data. Remote Sens Environ 140:497–508CrossRefGoogle Scholar
  33. Ehrlich MD, Martos P, Madirolas A et al (2000) Causes of spawning pattern variability of anchovy and hake on the Patagonian shelf. ICES CM 2000/N: 06, 13 ppGoogle Scholar
  34. Falabella V, Campagna C, Croxall J (eds) (2009) Atlas of the Patagonian Sea. Species and spaces. Wildlife Conservation Argentina, Buenos Aires and BirdLife International, CambridgeGoogle Scholar
  35. Fernández Aráoz NC, Pérez Seijas GM, Viñas MD et al (1991) Asociaciones zooplanctonicas de la Zona Común de Pesca argentino-uruguaya en relación con parámetros ambientales. Primavera 1986. Frente Marit 8:85–99Google Scholar
  36. Fernández Aráoz N, Santos B, Ramírez F (1994) Análisis ecológico de la distribución de los copépodos planctónicos de una campaña de primavera en la zona común de pesca. Frente Marit 15(A) 412: 133–140Google Scholar
  37. Fernández-Severini MD, Hoffmeyer M (2005) Mesozooplankton assemblages in two bays in the Beagle Channel (Argentina) during January 2001. Sci Mar 69(Suppl. 2):27–37CrossRefGoogle Scholar
  38. Hulsemann K (1985) Two species of Drepanopus Brady (Copepoda, Calanoida) with discrete ranges in the southern hemisphere. J Plankton Res 7:909–925CrossRefGoogle Scholar
  39. Ivanovic ML, Brunetti NE (1994) Food and feeding of Illex argentinus. Antarct Sci 6:185–193CrossRefGoogle Scholar
  40. Longhurst AR (2007) Toward an ecological geography of the sea. In: Longhurst AR (ed) Ecological geography of the sea. Academic, London, pp 1–17Google Scholar
  41. Lutz VA, Segura V, Dogliotti AI et al (2010) Primary production in the Argentine Sea during spring estimated by field and satellite models. J Plankton Res 32:181–195CrossRefGoogle Scholar
  42. Magalhães A, Leite ND, Silva JGS et al (2009) Seasonal variation in the copepod community structure from a tropical Amazon estuary, Northern Brazil. An Acad Bras Ciênc 81(2):187–197CrossRefPubMedGoogle Scholar
  43. Mauchline J, Fisher LR (1969) The biology of euphausiids. Adv Mar Biol 7:1–421. Academic, LondonGoogle Scholar
  44. Mauchline J (1980) The biology of mysids and euphausiids. Adv Mar Biol 18:1–681. Academic, LondonGoogle Scholar
  45. Mazzochi MG, Zagani G, Ianora A et al (1995) Copepods. In: Guglielmo L, Ianora A (eds) Atlas of marine zooplankton, Straits of Magellan. Springer, Berlin, pp 166–170CrossRefGoogle Scholar
  46. McPherson E (2002) Large-scale speciesrichness gradients in the Atlantic Ocean. Proc R Soc Lond B 269:1715–1720CrossRefGoogle Scholar
  47. Negri RM, Molinari G, Carignan M et al (2016) Ambiente y Plancton en la Zona Común de Pesca Argentino–Uruguaya en un escenario de cambio climático (marzo, 2014). Frente Marit 24:251–316Google Scholar
  48. Neumann-Leitão S, Sant’anna EME, Gusmão LMO et al (2008) Diversity and distribution of the mesozooplankton in the tropical Southwestern Atlantic. J Plankton Res 30(7):795–805CrossRefGoogle Scholar
  49. Nishida S (1985) Taxonomy and distribution of the family Oithonidae (Copepoda: Cyclopoida) in the Pacific and Indian Oceans. Bull Ocean Res Inst Univ Tokyo 20:1–167Google Scholar
  50. Padovani LN (2013) Biodiversidad y ecología de los anfípodos hiperideos del Mar Argentino y aguas adyacentes: Themisto gaudichaudii, una especie clave. Dissertation, Universidad Nacional de Mar del PlataGoogle Scholar
  51. Padovani LN, Viñas MD, Pájaro M (2011) Importance of the Rio de la Plata estuarine front (Southwest Atlantic Ocean) in the feeding ecology of Argentine anchovy, Engraulis anchoita (Cupleiformes, Cupleidae). Lat Am J Aquat Res 39:205–213CrossRefGoogle Scholar
  52. Padovani LN, Viñas MD, Sánchez F et al (2012) Amphipods-supported food web: Themisto gaudichaudii, a key food resource for fishes in southern Patagonian Shelf. J Sea Res 67(1):85–90CrossRefGoogle Scholar
  53. Padovani LN, Viñas MD, Sabatini ME et al (2015) Dinámica poblacional de Themisto gaudichaudii, una especie clave en la trama trófica de la plataforma patagónica austral. Rev Invest Desarr Pesq 26:69–88Google Scholar
  54. Pallares RE (1968) Copépodos marinos de la Ría Deseado (Santa Cruz, Argentina). Contribución sistemático-ecológica. Servicio de Hidrografía Naval H.1024:1–125Google Scholar
  55. Piola AR, Castro BM, Guerrero RA et al (2018). Overview on water masses, fronts and circulation of the subtropical and subantarctic shelves of the western South Atlantic. In: Hoffmeyer M (ed) Plankton ecology of Atlantic South America. From the subtropical to the subantarctic realm. Springer, HeidelbergGoogle Scholar
  56. Pisoni JP, Rivas AL, Piola AR (2015) On the variability of tidal fronts on a macrotidal continental shelf, Northern Patagonia, Argentina. Deep-Sea Res II 119:61–68CrossRefGoogle Scholar
  57. Ramírez FC (1966) Copépodos Cyclopoidos y Harpacticoidos del plancton de Mar del Plata. Buenos Aires: Asociación Argentina de Ciencias Naturales. Physis 26(72):285–292Google Scholar
  58. Ramírez FC (1970) Copépodos planctónicos del sector patagónico: resultados de la campaña ‘Pesquería XI. Physis 29:473–476Google Scholar
  59. Ramírez FC (1971) Eufáusidos de algunos sectores del Atlántico Sudoccidental. Physis 30(81):385–405Google Scholar
  60. Ramírez FC (1973) Eufáusidos de la expedición oceanográfica “Walther Herwig” 1966. Buenos Aires: Asociación Argentina de Ciencias Naturales. Physis 32(84):105–114Google Scholar
  61. Ramírez FC (1981) Zooplancton y producción secundaria. Parte I. Distribución y variación estacional de los copépodos. In: Angelescu V (ed) Campañas de investigación pesquera realizadas en el Mar Argentino por los B/I “Shinkai Maru” y “Walter Herwig” y el B/P “Marburg”, años 1978 y 1979. Resultados de la parte Argentina. Ser Contrib Inst Nac Invest Desarr Pesq 383:202–212Google Scholar
  62. Ramírez FC (2016) Eufáusidos. In: Boschi EE (ed) El Mar Argentino y sus recursos pesqueros, 6. Los crustáceos de interés pesquero y otras especies relevantes en los ecosistemas marinos. Publicaciones Especiales INIDEP, Mar del Plata, pp 15–28Google Scholar
  63. Ramírez FC, Viñas MD (1985) Hyperiid amphipods found in Argentine shelf waters. Physis A 43(104):25–37Google Scholar
  64. Ramírez FC, Santos BA (1994) Análisis del zooplancton de la plataforma bonaerense, en relación con algunas variables ambientales: Campañas Transección de 1987. Frente Marít 15(A):141–156Google Scholar
  65. Ramírez FC, Sabatini ME (2000) The occurrence of Calanidae species in waters off Argentina. Hydrobiologia 439:21–42CrossRefGoogle Scholar
  66. Rombouts I, Beaugrand G, Ibaňez F et al (2009) Global latitudinal variations in marine copepod diversity and environmental factors. Proc R Soc B 276:3053–3062CrossRefPubMedGoogle Scholar
  67. Sabatini ME (2008) Life history trends of copepods Drepanopus forcipatus (Clausocalanidae) and Calanus australis (Calanidae) in the southern Patagonian shelf (SW Atlantic). J Plankton Res 30:981–996CrossRefGoogle Scholar
  68. Sabatini M, Álvarez Colombo G (2001) Seasonal pattern of zooplankton biomass in the Argentinian shelf off Southern Patagonia (45°–55°S). Sci Mar 65(1):21–31CrossRefGoogle Scholar
  69. Sabatini ME, Martos P (2002) Mesozooplankton features in a frontal area off northern Patagonia (Argentina) during spring 1995 and 1998. Sci Mar 66:215–232CrossRefGoogle Scholar
  70. Sabatini M, Reta R, Matano R (2004) Circulation and zooplankton biomass distribution over the southern Patagonian shelf during late summer. Cont Shelf Res 24:1359–1373CrossRefGoogle Scholar
  71. Sabatini ME, Ramírez FC, Bradford-Grieve J (2007) Redescription of Calanoides carinatus (Krøyer, 1848) (Copepoda, Calanoida, Calanidae), with a discussion on the status of related species. Invertebr Syst 21:341–364CrossRefGoogle Scholar
  72. Sabatini M, Akselman R, Reta R et al (2012) Spring plankton communities in the southern Patagonian shelf: hydrography, mesozooplankton patterns and trophic relationships. J Mar Syst 94:33–51CrossRefGoogle Scholar
  73. Sabatini ME, Reta R, Lutz V et al (2016) Influence of oceanographic features on the spatial and seasonal patterns of mesozooplankton in the southern Patagonian shelf (Argentina, SW Atlantic). J Mar Syst 157:20–38CrossRefGoogle Scholar
  74. Sánchez RP, Bezzi SI (eds) (2004) El Mar Argentino y sus recursos pesqueros. Tomo 4. Los peces marinos de interés pesquero. Caracterización biológica y evaluación del estado de explotación. Publicaciones Especiales INIDEP, Mar del PlataGoogle Scholar
  75. Santos BA, Ramírez FC (1991) Variación estacional de las asociaciones de copépodos en una transecta de la plataforma argentina. Bolm Oceanogr Sâo Paulo 39(1):71–86CrossRefGoogle Scholar
  76. Santos BA, Ramírez FC (1995) Distribución y abundancia de copépodos en el sistema frontal de Península Valdés durante florecimientos fitoplanctónicos. Thalassas 11:133–142Google Scholar
  77. Sherman K, Duda AM (1999) An ecosystem approach to global assessment and management of coastal waters. Mar Ecol Prog Ser 10:271–287CrossRefGoogle Scholar
  78. Silva RI, Negri RM, Lutz V (2009) Summer succession of ultraphytoplankton at the EPEA coastal station (Northern Argentina). J Plankton Res 31:447–458CrossRefGoogle Scholar
  79. Song H, Marshall J, Follows MJ et al (2016) Source waters for the highly productive Patagonian shelf in the southwestern Atlantic. J Mar Syst 158:120–128CrossRefGoogle Scholar
  80. Spalding MD, Fox HE, Allen GR et al (2007) Marine ecoregions of the world: a Bioregionalization of coastal and shelf areas. Bioscience 57(7):573–583CrossRefGoogle Scholar
  81. Spinelli ML, Pájaro M, Martos P et al (2012) Potential zooplankton preys (Copepoda and Appendicularia) for Engraulis anchoita in relation to early larval and spawning distributions in the Patagonian frontal system (SW Atlantic Ocean). Sci Mar 76(1):39–47CrossRefGoogle Scholar
  82. Temperoni B, Viñas MD, Diovisalvi N et al (2011) Seasonal production of Oithona nana Giesbrecht, 1983 (Copepoda: Cyclopoida) in temperate coastal waters off Argentina. J Plankton Res 33(5):729–740CrossRefGoogle Scholar
  83. Temperoni B, Viñas MD (2013) Food and feeding of Argentine hake (Merluccius hubbsi) larvae in the Patagonian nursery ground. Fish Res 148:47–55CrossRefGoogle Scholar
  84. Temperoni B, Viñas MD, Martos P et al (2014) Spatial patterns of copepod biodiversity in relation to a tidal front system in the main spawning and nursery area of the Argentine hake Merluccius hubbsi. J Mar Syst 139:443–445CrossRefGoogle Scholar
  85. Valentine JW (2009) Overview of marine biodiversity. In: Witman JD, Roy K (eds) Marine macroecology. University of Chicago Press, Chicago, pp 3–28CrossRefGoogle Scholar
  86. Vinogradov G (1999) Amphipoda. In: Boltovskoy D (ed) Zooplankton of the Southwestern Atlantic. Backhuys, Leiden, pp 1141–1240Google Scholar
  87. Viñas MD, Santos BA (2000) First-feeding of hake (Merluccius hubbsi) larvae and prey availability in the North Patagonian spawning area – comparison with anchovy. Arch Fish Mar Res 48:242–254Google Scholar
  88. Viñas MD, Ramírez FC (1996) Gut analysis of first-feeding anchovy larvae from Patagonian spawning area in relation to food availability. Arch Fish Mar Res 43:231–256Google Scholar
  89. Viñas MD, Sánchez F, Marrari M et al (1999) Zooplancton, hidrografía y ecología trófica de la caballa (Scomber japonicus) en el área de El Rincón (39–41°S). Paper presented at the 8th COLACMAR, Trujillo, Perú, 17–21 October 1999Google Scholar
  90. Viñas MD, Ramírez FC, Santos B et al (2007) Spatial and temporal distribution patterns of Cladocera in the Argentine Sea. Hydrobiologia 594:59–68CrossRefGoogle Scholar
  91. Viñas MD, Marrari M, Di Mauro R et al (2013a) El zooplancton del hábitat reproductivo de la población bonaerense de anchoíta (Engraulis anchoita), con especial énfasis en crustáceos. Rev Invest Desarr Pesq 23:125–144Google Scholar
  92. Viñas MD, Negri RM, Cepeda GC et al (2013b) Seasonal succession of zooplankton in coastal waters of the Argentine Sea (Southwest Atlantic Ocean): prevalence of classical or microbial food webs. Mar Biol Res 9(4):371–382CrossRefGoogle Scholar
  93. Viñas MD, Blanco-Bercial L, Bucklin A et al (2015) Phylogeography of the copepod Calanoides carinatus s.l. (Krøyer) reveals cryptic species and delimits C. carinatus s.s. distribution in SW Atlantic Ocean. J Exp Mar Biol Ecol 468:97–104CrossRefGoogle Scholar
  94. Viñas MD, Álvarez Colombo G, Padovani L (2016) Anfípodos Hipérideos. In: Boschi EE (ed) El Mar Argentino y sus recursos pesqueros, 6. Los crustáceos de interés pesquero y otras especies relevantes en los ecosistemas marinos. Publicaciones Especiales INIDEP, Mar del Plata, pp 29–39Google Scholar
  95. WoRMS Editorial Board (2017) World register of marine species. Available from http://www.marinespecies.org at VLIZ. doi: https://doi.org/10.14284/170. Accessed 25 Sept 2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Georgina D. Cepeda
    • 1
    • 2
  • Brenda Temperoni
    • 1
    • 2
  • Marina E. Sabatini
    • 1
    • 2
  • María D. Viñas
    • 1
    • 2
  • Carla M. Derisio
    • 2
  • Betina A. Santos
    • 2
  • Julieta C. Antacli
    • 3
  • Luciano N. Padovani
    • 2
  1. 1.Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Mar del Plata (CONICET – UNMdP)Mar del Plata, Buenos AiresArgentina
  2. 2.Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)Mar del Plata, Buenos AiresArgentina
  3. 3.Instituto de Diversidad y Ecología Animal (IDEA)Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Córdoba (CONICET – UNC)CórdobaArgentina

Personalised recommendations