Advertisement

Perspective: Continental Inputs of Matter into Planktonic Ecosystems of the Argentinean Continental Shelf—the Case of Atmospheric Dust

  • Augusto C. Crespi-Abril
  • Elena S. Barbieri
  • Leilén Gracia Villalobos
  • Gaspar Soria
  • Flavio E. Paparazzo
  • Joanna M. Paczkowska
  • Rodrigo J. Gonçalves
Chapter

Abstract

Land-derived dissolved and particulate matter (allochthonous matter) affect pelagic ecosystems by changing factors which include light penetration, nutrient availability, substrate concentration, and in general, biogeochemical cycles in the ocean. In a context of growing anthropogenic impact, this material may not only increase its load but also carry toxic substances. Riverine runoff is the most studied mechanism of particulate matter input from the continent to the sea in the southern region of South America where the continental shelf is widest (e.g., Atlantic Patagonia). However, there are other sources of particulate matter which are not affected by rivers in this semiarid region: aeolian material. Winds in this region (notably the Southern Hemisphere westerlies) are the only way continental aeolian material (atmospheric aerosols or “dust”) can reach not only the shelf but even further onto oceanic HNLC (high nutrient–low chlorophyll) regions of the Atlantic Southern Ocean. This potential impact of Patagonian dust beyond the continental shelf attracts the attention of the global climate community, and at the same time, it opens questions about the potential effects of dust in coastal waters. According to previous work and ongoing studies, deposited particles can have significant impacts in the chemical and biological components in the euphotic zone. However the effects of this airborne material in plankton communities of South America are largely unknown, mostly due to the lack of in situ studies and observations. Since the events of dust mobilization, transport, and deposition are expected to increase (due to climate change) and interact with other global change factors such as warming and more intensive land use, the influence of dust input may become more prominent for coastal and oceanic regions of southern South America in the next decades.

Keywords

Aeolian dust Atmospheric deposition Particulate matter Southwest Atlantic 

Notes

Acknowledgments

This work was supported by CONICET (PIP 6447-2016 to R.J.G.) and FONCYT (PICT-2015-1837 to A. C.-A.).

References

  1. Acha EM, Mianzan H, Guerrero R et al (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Marine Sys 44(1):83–105CrossRefGoogle Scholar
  2. Acha EM, Mianzan H, Guerrero R et al (2008) An overview of physical and ecological processes in the Rio de la Plata Estuary. Cont Shelf Res 28:1579–1588.  https://doi.org/10.1016/j.csr.2007.01.031 CrossRefGoogle Scholar
  3. Baker AR, Jickells TD (2006) Mineral particle size as a control on aerosol iron solubility. Geophys Res Lett 33:L17608.  https://doi.org/10.1029/2006GL026557 CrossRefGoogle Scholar
  4. Baker AR, Kelly SD, Biswas KF et al (2003) Atmospheric deposition of nutrients to the Atlantic Ocean. Geophys Res Lett 30(24):2296.  https://doi.org/10.1029/2003GL018518 CrossRefGoogle Scholar
  5. Baker AR, Kanakidou M, Altieri KE et al (2017) Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans. Atmos Chem Phys Discuss:1–38.  https://doi.org/10.5194/acp-2016-1123
  6. Bonnet S, Guieu C (2004) Dissolution of atmospheric iron in seawater. Geophys Res Lett 31:L03303.  https://doi.org/10.1029/2003GL018423 CrossRefGoogle Scholar
  7. Bonnet S, Guieu C, Chiaverini J et al (2005) Effect of atmospheric nutrients on the autotrophic communities in a low nutrient, low chlorophyll system. Limnol Oceanogr 50:1810–1819.  https://doi.org/10.4319/lo.2005.50.6.1810 CrossRefGoogle Scholar
  8. Boyd PW, Doney SC (2003) The impact of climate change and feedback processes on the ocean carbon cycle. In: Fasham MJR (ed) Ocean biogeochemistry — the role of the ocean carbon cycle in global change. Springer, Berlin, pp 157–193Google Scholar
  9. Bullard JE, Baddock M, Bradwell T et al (2016) High-latitude dust in the earth system. Rev Geophys 54.  https://doi.org/10.1002/2016RG000518
  10. Burrows SM, Elbert W, Lawrence MG et al (2009) Bacteria in the global atmosphere–part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263–9280.  https://doi.org/10.5194/acp-9-9263-2009 CrossRefGoogle Scholar
  11. Cabrerizo MJ, Medina-Sánchez JM, González-Olalla JM et al (2016) Saharan dust inputs and high UVR levels jointly alter the metabolic balance of marine oligotrophic ecosystems. Sci Rep 6:35892.  https://doi.org/10.1038/srep35892 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cabrerizo MJ, Medina-Sánchez JM, Dorado-García I et al (2017) Rising nutrient-pulse frequency and high UVR strengthen microbial interactions. Sci Rep 7:43615.  https://doi.org/10.1038/srep43615 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–496.  https://doi.org/10.1038/nclimate1452 CrossRefGoogle Scholar
  14. Crespi Abril AC, Montes AMI, Williams GN et al (2016) Uso de sensores remotos para la detección de eventos de transporte eólico de sedimentos hacia ambientes marinos en Patagonia. Meteor-Forschung 41:33–47Google Scholar
  15. Crespi-Abril AC, Soria G, De Cian A et al (2018) Roaring forties: an analysis of a decadal series of data of dust in Northern Patagonia. Atmos Environ 177:111–119CrossRefGoogle Scholar
  16. Del Valle HF, Elissalde NO, Gagliardini DA et al (1998) Status of desertification in the Patagonian region: assessment and mapping from satellite imagery. Arid Soil Res Rehabil 12:95–121.  https://doi.org/10.1080/15324989809381502 CrossRefGoogle Scholar
  17. Derisio C, Braverman M, Gaitán E et al (2014) The turbidity front as a habitat for Acartia tonsa (Copepoda) in the Río de la Plata, Argentina-Uruguay. J Sea Res 85:197–204.  https://doi.org/10.1016/j.seares.2013.04.019 CrossRefGoogle Scholar
  18. Després VR, Huffman JA, Burrows SM et al (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus Ser B Chem Phys Meteorol 64:15598.  https://doi.org/10.3402/tellusb.v64i0.15598 CrossRefGoogle Scholar
  19. Duce RA, Tindale NW (1991) Atmospheric transport of iron and its deposition in the ocean. Limnol Oceanogr 36:1715–1726.  https://doi.org/10.4319/lo.1991.36.8.1715 CrossRefGoogle Scholar
  20. Duggen S, Olgun N, Croot P et al (2010) The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosciences 7:827–844CrossRefGoogle Scholar
  21. Easterling DR (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074.  https://doi.org/10.1126/science.289.5487.2068 CrossRefPubMedGoogle Scholar
  22. Framiñan MB, Brown OB (1996) Study of the Río de la Plata turbidity front, part 1: spatial and temporal distribution. Cont Shelf Res 16:12591269–12671282CrossRefGoogle Scholar
  23. Gaiero DM, Probst J-L, Depetris PJ et al (2003) Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim Cosmochim Acta 67:3603–3623.  https://doi.org/10.1016/S0016-7037(03)00211-4 CrossRefGoogle Scholar
  24. Gaiero DM, Brunet F, al PJ-L (2007) A uniform isotopic and chemical signature of dust exported from Patagonia: rock sources and occurrence in southern environments. Chem Geol 238:107–120.  https://doi.org/10.1016/j.chemgeo.2006.11.003 CrossRefGoogle Scholar
  25. Gallisai R, Peters F, Volpe G et al (2014) Saharan dust deposition may affect phytoplankton growth in the Mediterranean Sea at ecological time scales. PLoS One 9:e110762.  https://doi.org/10.1371/journal.pone.0110762 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Garreaud R, Lopez P, Minvielle M et al (2012) Large-scale control on the Patagonian climate. J Clim 26:215–230.  https://doi.org/10.1175/JCLI-D-12-00001.1 CrossRefGoogle Scholar
  27. Gassó S, Stein AF (2007) Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean? Geophys Res Lett 34:L01801.  https://doi.org/10.1029/2006GL027693 CrossRefGoogle Scholar
  28. Gassó S, Grassian VH, Miller RL (2010a) Interactions between mineral dust, climate, and ocean ecosystems. Elements 6:247–252.  https://doi.org/10.2113/gselements.6.4.247 CrossRefGoogle Scholar
  29. Gassó S, Stein A, Marino F et al (2010b) A combined observational and modeling approach to study modern dust transport from the Patagonia desert to East Antarctica. Atmos Chem Phys 10:8287–8303.  https://doi.org/10.5194/acp-10-8287-2010 CrossRefGoogle Scholar
  30. Gili S, Gaiero DM (2014) South American dust signature in geological archives of the Southern Hemisphere. Pages Mag 22:78CrossRefGoogle Scholar
  31. Gill TE (1996) Eolian sediments generated by anthropogenic disturbance of playas: human impacts on the geomorphic system and geomorphic impacts on the human system. Geomorphology 17:207–228.  https://doi.org/10.1016/0169-555X(95)00104-D CrossRefGoogle Scholar
  32. Gillette DA (1981) Production of dust that may be carried great distances. Geol Soc Am Spec Pap 186:11–26.  https://doi.org/10.1130/SPE186-p11 CrossRefGoogle Scholar
  33. Guieu C, Martin JM, Thomas AJ et al (1991) Atmospheric versus river inputs of metals to the Gulf of Lions. Mar Pollut Bull 22:176–183.  https://doi.org/10.1016/0025-326X(91)90467-7 CrossRefGoogle Scholar
  34. Herut B, Krom MD, Pan G et al (1999) Atmospheric input of nitrogen and phosphorus to the Southeast Mediterranean: sources, fluxes, and possible impact. Limnol Oceanogr 44:1683–1692.  https://doi.org/10.4319/lo.1999.44.7.1683 CrossRefGoogle Scholar
  35. Humborg C, Conley DJ, Rahm L et al (2000) Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. AMBIO J Hum Environ 29:45.  https://doi.org/10.1639/0044-7447(2000)029[0045:SRIRBF]2.0.CO;2 CrossRefGoogle Scholar
  36. Jaenicke R (2005) Abundance of cellular material and proteins in the atmosphere. Science 308:73–73.  https://doi.org/10.1126/science.1106335 CrossRefPubMedGoogle Scholar
  37. Jaenicke R, Matthias-Maser S, Gruber S (2007) Omnipresence of biological material in the atmosphere. Environ Chem 4:217.  https://doi.org/10.1071/EN07021 CrossRefGoogle Scholar
  38. Jickells TD, An ZS, Andersen KK et al (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71.  https://doi.org/10.1126/science.1105959 CrossRefPubMedGoogle Scholar
  39. Johnson MS, Meskhidze N, Solmon F et al (2010) Modeling dust and soluble iron deposition to the South Atlantic Ocean. J Geophys Res Atmos 115:D15202.  https://doi.org/10.1029/2009JD013311 CrossRefGoogle Scholar
  40. Johnson MS, Meskhidze N, Kiliyanpilakkil VP et al (2011) Understanding the transport of Patagonian dust and its influence on marine biological activity in the South Atlantic Ocean. Atmos Chem Phys 11:2487–2502.  https://doi.org/10.5194/acp-11-2487-2011 CrossRefGoogle Scholar
  41. Knippertz P, Stuut J-BW (eds) (2014) Mineral Dust. Springer, DordrechtGoogle Scholar
  42. Le Quéré C, Aumont O, Monfray P et al (2003) Propagation of climatic events on ocean stratification, marine biology, and CO2: case studies over the 1979–1999 period. J Geophys Res Oceans 108:3375.  https://doi.org/10.1029/2001JC000920 CrossRefGoogle Scholar
  43. Lekunberri I, Lefort T, Romero E et al (2010) Effects of a dust deposition event on coastal marine microbial abundance and activity, bacterial community structure and ecosystem function. J Plankton Res 32:381–396.  https://doi.org/10.1093/plankt/fbp137 CrossRefGoogle Scholar
  44. Lucas AJ, Guerrero RA, Mianzan HW et al (2005) Coastal oceanographic regimes of the northern argentine continental shelf (34?43?S). Estuar Coast Shelf Sci 65:405–420.  https://doi.org/10.1016/j.ecss.2005.06.015 CrossRefGoogle Scholar
  45. Maher BA, Prospero JM, Mackie D et al (2010) Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum. Earth-Sci Rev 99:61–97.  https://doi.org/10.1016/j.earscirev.2009.12.001 CrossRefGoogle Scholar
  46. Mahowald NM, Baker AR, Bergametti G et al (2005) Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cycles 19:GB4025.  https://doi.org/10.1029/2004GB002402 CrossRefGoogle Scholar
  47. Mahowald NM, Engelstaedter S, Luo C et al (2009) Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu Rev Mar Sci 1:245–278.  https://doi.org/10.1146/annurev.marine.010908.163727 CrossRefGoogle Scholar
  48. Manabe S, Stouffer RJ (1993) Century-scale effects of increased atmospheric C02 on the ocean–atmosphere system. Nature 364:215–218.  https://doi.org/10.1038/364215a0 CrossRefGoogle Scholar
  49. Mazzonia E, Vazquez M (2009) Desertification in Patagonia. In: Latrubesse EM (ed) Natural hazards and human-exacerbated disasters in Latin America, Develop earth surf process, vol 13, pp 351–377CrossRefGoogle Scholar
  50. McTainsh G, Strong C (2007) The role of aeolian dust in ecosystems. Geomorphology 89:39–54.  https://doi.org/10.1016/j.geomorph.2006.07.028 CrossRefGoogle Scholar
  51. Milliman JD (2001) River inputs. In: Steele J, Thorpe S, Turekian K (eds) Encyclopedia of ocean sciences (1st ed., pp 2419–2427). New York (USA): Academic Press. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/B012227430X00074X
  52. Nagy GJ, Gómez-Erache M, López CH et al (2002) Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata River estuary system. In: Orive E, Elliott M, de Jonge VN (eds) Nutrients and eutrophication in estuaries and coastal waters, Proc 31st Symp Estuar coastal Sci Assoc (ECSA). Springer, Dordrecht, pp 125–139CrossRefGoogle Scholar
  53. Paparazzo FE, Williams GN, Pisoni JP et al (2017) Linking phytoplankton nitrogen uptake, macronutrients and chlorophyll- a in SW Atlantic waters: the case of the Gulf of san Jorge, Argentina. J Mar Syst 172:43–50.  https://doi.org/10.1016/j.jmarsys.2017.02.007 CrossRefGoogle Scholar
  54. Paytan A, Mackey KRM, Chen Y et al (2009) Toxicity of atmospheric aerosols on marine phytoplankton. Proc Natl Acad Sci 106:4601–4605.  https://doi.org/10.1073/pnas.0811486106 CrossRefPubMedGoogle Scholar
  55. Prospero JM (1996) Saharan dust transport over the North Atlantic Ocean and Mediterranean: an overview. In: Guerzoni S, Chester R (eds) The impact of desert dust across the Mediterranean. Springer, Dordrecht, pp 133–151CrossRefGoogle Scholar
  56. Prospero JM, Ginoux P, Torres O et al (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev Geophys 40:1002.  https://doi.org/10.1029/2000RG000095 CrossRefGoogle Scholar
  57. Pulido-Villena E, Rérolle V, Guieu C (2010) Transient fertilizing effect of dust in P-deficient LNLC surface ocean. Geophys Res Lett 37:L01603.  https://doi.org/10.1029/2009GL041415 CrossRefGoogle Scholar
  58. Ridgwell A (2002) Dust in the earth system: the biogeochemical linking of land, air, and sea. Philos Trans R Soc Lond A 360:2905–2924CrossRefGoogle Scholar
  59. Russell JL, Dixon KW, Gnanadesikan A et al (2006) The Southern Hemisphere Westerlies in a warming world: propping open the door to the deep ocean. J Clim 19:6382–6390.  https://doi.org/10.1175/JCLI3984.1 CrossRefGoogle Scholar
  60. Sarmiento JL, Hughes TMC, Stouffer RJ et al (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249.  https://doi.org/10.1038/30455 CrossRefGoogle Scholar
  61. Shao Y, Wyrwoll K-H, Chappell A et al (2011) Dust cycle: an emerging core theme in earth system science. Aeolian Res 2:181–204.  https://doi.org/10.1016/j.aeolia.2011.02.001 CrossRefGoogle Scholar
  62. Shinn EA, Smith GW, Prospero JM et al (2000) African dust and the demise of Caribbean coral reefs. Geophys Res Lett 27:3029–3032.  https://doi.org/10.1029/2000GL011599 CrossRefGoogle Scholar
  63. Simonella LE, Palomeque ME, Croot PL et al (2015) Soluble iron inputs to the Southern Ocean through recent andesitic to rhyolitic volcanic ash eruptions from the Patagonian Andes. Global Biogeochem Cycles 29:1125–1144.  https://doi.org/10.1002/2015GB005177 CrossRefGoogle Scholar
  64. Thompson DWJ, Solomon S (2002) Interpretation of recent southern hemisphere climate change. Science 296:895–899CrossRefPubMedGoogle Scholar
  65. Thompson DWJ, Solomon S, Kushner PJ et al (2011) Signatures of the Antarctic ozone hole in southern hemisphere surface climate change. Nat Geosci 4:741–749.  https://doi.org/10.1038/ngeo1296 CrossRefGoogle Scholar
  66. Turner RE, Qureshi N, Rabalais NN et al (1998) Fluctuating silicate: nitrate ratios and coastal plankton food webs. Proc Natl Acad Sci 95:13048–13051CrossRefPubMedGoogle Scholar
  67. Washington R, Todd M, Middleton NJ et al (2003) Dust-storm source areas determined by the Total ozone monitoring spectrometer and surface observations. Ann Assoc Am Geogr 93:297–313.  https://doi.org/10.1111/1467-8306.9302003 CrossRefGoogle Scholar
  68. Yang SL, Zhang J, Xu XJ (2007) Influence of the three gorges dam on downstream delivery of sediment and its environmental implications, Yangtze River. Geophys Res Lett 34:L10401.  https://doi.org/10.1029/2007GL029472 CrossRefGoogle Scholar
  69. Yu H, Chin M, Bian H et al (2015) Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements. Remote Sens Environ 159:232–249CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Augusto C. Crespi-Abril
    • 1
    • 2
  • Elena S. Barbieri
    • 1
  • Leilén Gracia Villalobos
    • 1
  • Gaspar Soria
    • 1
    • 2
  • Flavio E. Paparazzo
    • 1
    • 3
  • Joanna M. Paczkowska
    • 1
  • Rodrigo J. Gonçalves
    • 1
  1. 1.Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Puerto MadrynArgentina
  2. 2.Universidad Nacional de la Patagonia San Juan Bosco, Facultad de Ciencias Naturales, Sede Puerto MadrynPuerto MadrynArgentina
  3. 3.Laboratorio de Oceanografía Química y Contaminación de Aguas (LOQyCA), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Puerto MadrynArgentina

Personalised recommendations