Global Change and Plankton Ecology in the Southwestern Atlantic

  • Elena S. Barbieri
  • María A. Marcoval
  • Rodrigo D. Hernández-Moresino
  • Mariela L. Spinelli
  • Rodrigo J. GonçalvesEmail author


In aquatic ecosystems, global change encompasses human-induced variations in the upper layer of the water column, where most of the carbon fixation takes place. These changes include increments of exposure to solar UV radiation, mean temperature of surface seawater, ocean acidification and variations in nutrient concentrations. These factors are well known to affect plankton ecosystems, although not all organisms are equally affected. In addition, many times these factors interact so that the final results are not always additive or synergistic as expected. Finally, indirect effects (e.g. through trophic interactions) are often more pronounced than direct ones (e.g. survival or growth), which in some cases mask overall and long-term expected ecological shifts in plankton communities. We review the main contributions in this field from the Atlantic coast of South America and discuss in a final section what have we learned and what is still unknown as global changes seem to be here to stay.


Global change Planktonic communities UV radiation Human impact 


  1. Abele D, Vazquez-Medina JP, Zenteno-Savin T (eds) (2011) Oxidative stress in aquatic ecosystems. Wiley-Blackwell, Chichester, West Sussex (UK)Google Scholar
  2. Agusti S, Llabrés M (2007) Solar radiation-induced mortality of marine pico-phytoplankton in the oligotrophic ocean. Photochem Photobiol 83:793–801CrossRefPubMedGoogle Scholar
  3. Barbieri ES, Villafañe VE, Helbling EW (2002) Experimental assessment of UV effects upon temperate marine phytoplankton when exposed to variable radiation regimes. Limnol Oceanogr 47:1648–1655CrossRefGoogle Scholar
  4. Bates N, Astor Y, Church M et al (2014) A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography.
  5. Bouchard JN, Campbell DA, Roy S (2005) Effects of UV-B radiation on the D1 protein repair cycle of natural phytoplankton communities from three latitudes (Canada, Brazil, and Argentina). J Phycol.
  6. Buma AGJ, Helbling EW, de Boer MK et al (2001) Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation. J Photochem Photobiol B 62:9–18CrossRefPubMedGoogle Scholar
  7. Burridge AK, Goetze E, Wall-Palmer D et al (2016) Diversity and abundance of pteropods and heteropods along a latitudinal gradient across the Atlantic Ocean. Prog Oceanogr.
  8. Cabrerizo MJ, Carrillo P, Villafañe VE et al (2017) Differential impacts of global change variables on coastal South Atlantic phytoplankton: role of seasonal variations. Mar Environ Res.
  9. Carreto J, Carignan M (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9:387–446CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dunlap WC, Yamamoto Y (1995) Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp Biochem Physiol 112B:105–114CrossRefGoogle Scholar
  11. Durán-Romero C, Villafañe VE, Valiñas MS, et al (2017) Solar UVR sensitivity of phyto- and bacterioplankton communities from Patagonian coastal waters under increased nutrients and acidification. ICES J Mar Sci.
  12. de Fernandes LDA, Quintanilha J, Monteiro-Ribas W et al (2012) Seasonal and interannual coupling between sea surface temperature, phytoplankton and meroplankton in the subtropical South-Western Atlantic Ocean. J Plankton Res.
  13. Fileman ES, White DA, Harmer RA et al (2017) Stress of life at the ocean’s surface: latitudinal patterns of UV sunscreens in plankton across the Atlantic. Prog Oceanogr.
  14. Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717CrossRefGoogle Scholar
  15. Gonçalves RJ, Hylander S (2014) Marine copepods and solar radiation. In: Seuront L (ed) Copepods: diversity, habitat and behavior. Nova Science Publishers, Inc., Hauppauge, pp 101–120Google Scholar
  16. Gonçalves RJ, Hernández - Moresino RD, Spinelli ML (2014) Short-term effect of UVR on vertical distribution of Cyrtograpsus altimanus and Alexandrium tamarense from Atlantic Patagonia. Lat Am J Aquat Res 42:963–970Google Scholar
  17. Guinder VA, Popovich CA, Molinero JC et al (2013) Phytoplankton summer bloom dynamics in the Bahía Blanca Estuary in relation to changing environmental conditions. Cont Shelf Res.
  18. Guinder VA, López-Abbate MC, Berasategui AA et al (2015) Influence of the winter phytoplankton bloom on the settled material in a temperate shallow estuary. Oceanologia.
  19. Harley CDG, Hughes AR, Hultgre KM et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241CrossRefPubMedGoogle Scholar
  20. Helbling EW, Buma AGJ, de Boer MK et al (2001) In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton. Mar Ecol Prog Ser 211:43–49CrossRefGoogle Scholar
  21. Helbling EW, Barbieri ES, Marcoval MA et al (2005) Impact of solar ultraviolet radiation on marine phytoplankton of Patagonia, Argentina. Photochem Photobiol 81:807–818CrossRefPubMedGoogle Scholar
  22. Helbling EW, Buma AGJ, Van de Poll W et al (2008) UVR-induced photosynthetic inhibition dominates over DNA damage in marine dinoflagellates exposed to fluctuating solar radiation regimes. J Exp Mar Biol Ecol 365:96–102CrossRefGoogle Scholar
  23. Helbling EW, Banaszak AT, Villafañe VE (2015) Differential responses of two phytoplankton communities from the Chubut River estuary (Patagonia, Argentina) to the combination of UVR and elevated temperature. Estuar Coasts.
  24. Herman JR (2010) Global increase in UV irradiance during the past 30 years (1979–2008) estimated from satellite data. J Geophys Res-Atmos.
  25. Hernández-Moresino RD, Helbling EW (2010) Combined effects of UVR and temperature on the survival of crab larvae (Zoea I) from Patagonia: the role of UV-absorbing compounds. Mar Drugs 8:1681–1698Google Scholar
  26. Hernández-Moresino RD, Gonçalves RJ, Helbling EW (2011) Sublethal effects of ultraviolet radiation on crab larvae of Cyrtograpsus altimanus. J Exp Mar Biol Ecol.
  27. Hernández-Moresino RD, Gonçalves RJ, Helbling EW (2014) Direct and indirect acquisition of photoprotective compounds in crab larvae of coastal Patagonia (Argentina). J Plankton Res.
  28. Hoffman JR, Hansen LJ, Klinger T (2003) Interactions between UV radiation and temperature limit inferences from single-factor experiments. J Phycol 39:268–272CrossRefGoogle Scholar
  29. Hoffmeyer M (2004) Decadal change in zooplankton seasonal succession in the Bahía Blanca estuary, Argentina, following introduction of two zooplankton species. J Plankton Res 26:181–189CrossRefGoogle Scholar
  30. Jacquet S, Bratbak G (2003) Effects of ultraviolet radiation on marine virus-phytoplankton interactions. FEMS Microbiol Ecol.
  31. Jaque F, Tocho JO, Silva LFD et al (1994) Ground-based ultraviolet-radiation measurements during springtime in the southern hemisphere. Europhys Lett EPL.
  32. Karentz D, McEuen FS, Land MC, Dunlap WC (1991) Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Mar Biol 108:157–166CrossRefGoogle Scholar
  33. Kitidis V, Brown I, Hardman-Mountford N et al (2016) Surface ocean carbon dioxide during the Atlantic Meridional transect (1995–2013); evidence of ocean acidification. Prog Oceanogr.
  34. Lesser MP, Farrell JH, Walker CW (2001) Oxidative stress, DNA damage and p53 expression in the larvae of Atlantic cod (Gadus morhua) exposed to ultraviolet (290–400 nm) radiation. J Exp Biol 204:157–164PubMedGoogle Scholar
  35. Longhi ML, Ferreyra G, Schloss I et al (2006) Variable phytoplankton response to enhanced UV-B and nitrate addition in mesocosm experiments at three latitudes (Canada, Brazil and Argentina). Mar Ecol Prog Ser 313:57–72CrossRefGoogle Scholar
  36. Manrique, J. M., Calvo, A. Y., Halac, S. R., Villafañe, V. E., Jones, L. R., & Helbling, E. W. (2012). Effects of UV radiation on the taxonomic composition of natural bacterioplankton communities from Bahía Engaño (Patagonia, Argentina). J Photochem Photobiol B 117: 171–178Google Scholar
  37. Marcoval MA, Villafañe VE, Helbling EW (2007) Interactive effects of ultraviolet radiation and nutrient addition on growth and photosynthesis performance of four species of marine phytoplankton. J Photochem Photobiol B 89:78–87CrossRefPubMedGoogle Scholar
  38. Marcoval MA, Villafañe VE, Helbling EW (2008) Combined effects of solar ultraviolet radiation and nutrients addition on growth, biomass and taxonomic composition of coastal marine phytoplankton communities of Patagonia. J Photochem Photobiol B 91:157–166CrossRefPubMedGoogle Scholar
  39. Martínez M, Rodríguez-Graña L, Santos L et al (2017) Oxidative damage and vital rates in the copepod Acartia tonsa in subtropical estuaries with contrasting anthropogenic impact. J Exp Mar Biol Ecol.
  40. Nagy GJ, Gómez-Erache M, López CH et al (2002) Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata River estuary system. In: Orive E, Elliott M, de Jonge VN (eds) Nutrients and eutrophication in estuaries and coastal waters: proceedings of the 31st symposium of the Estuarine and coastal sciences association (ECSA), held in Bilbao, Spain, 3–7 July 2000. Springer Netherlands, Dordrecht, pp 125–139Google Scholar
  41. Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett.
  42. Richter PR, Häder D-P, Goncalves RJ et al (2007) Vertical migration and motility responses in three marine phytoplankton species exposed to solar radiation. Photochem Photobiol 83:810–817CrossRefPubMedGoogle Scholar
  43. Roemmich D, McGowan J (1995) Climatic warming and the decline of zooplankton in the California current. Science.
  44. Roux S, Brum JR, Dutilh BE et al (2016) Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature.
  45. Roy S, Mohovic B, Gianesella SMF et al (2006) Effects of enhanced UV-B on pigment-based phytoplankton biomass and composition of mesocosm-enclosed natural marine communities from three latitudes. Photochem Photobiol 82:909–922CrossRefPubMedGoogle Scholar
  46. Vernet M, Diaz SB, Fuenzalida HA et al (2009) Quality of UVR exposure for different biological systems along a latitudinal gradient. Photochem Photobiol Sci.
  47. Villafañe VE, Helbling EW, Zagarese HE (2001) Solar ultraviolet radiation and its impact on aquatic systems of Patagonia, South America. Ambio 30:112–117CrossRefPubMedGoogle Scholar
  48. Villafañe VE, Barbieri ES, Helbling EW (2004a) Annual patterns of ultraviolet radiation effects on temperate marine phytoplankton off Patagonia, Argentina. J Plankton Res 26:167–174CrossRefGoogle Scholar
  49. Villafañe VE, Marcoval MA, Helbling EW (2004b) Photosynthesis versus irradiance characteristics in phytoplankton assemblages off Patagonia (Argentina): temporal variability and solar UVR effects. Mar Ecol Prog Ser 284:23–34CrossRefGoogle Scholar
  50. Villafañe VE, Janknegt PJ, de Graaff M et al (2008) UVR-induced photoinhibition of summer marine phytoplankton communities from Patagonia. Mar Biol 154:1021–1029CrossRefGoogle Scholar
  51. Villafañe VE, Banaszak AT, Guendulain-García SD et al (2013) Influence of seasonal variables associated with climate change on photochemical diurnal cycles of marine phytoplankton from Patagonia (Argentina). Limnol Oceanogr.
  52. Villafañe VE, Erzinger GS, Strauch SM et al (2014) Photochemical activity of PSII of tropical phytoplankton communities of Southern Brazil exposed to solar radiation and nutrient addition. J Exp Mar Biol Ecol.
  53. Villafañe VE, Valiñas MS, Cabrerizo MJ et al (2015) Physio-ecological responses of Patagonian coastal marine phytoplankton in a scenario of global change: role of acidification, nutrients and solar UVR. Mar Chem.
  54. Villafañe VE, Cabrerizo MJ, Erzinger GS et al (2017) Photosynthesis and growth of temperate and sub-tropical estuarine phytoplankton in a scenario of nutrient enrichment under solar ultraviolet radiation exposure. Estuar Coasts.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Elena S. Barbieri
    • 1
  • María A. Marcoval
    • 2
  • Rodrigo D. Hernández-Moresino
    • 1
  • Mariela L. Spinelli
    • 3
  • Rodrigo J. Gonçalves
    • 1
    Email author
  1. 1.Laboratorio de Oceanografía Biológica (LOBio)Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Puerto MadrynArgentina
  2. 2.Instituto de Investigaciones Marinas y Costeras (IIMyC)Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de Mar del Plata (CONICET–UMNdP)Buenos AiresArgentina
  3. 3.Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA)Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad de Buenos Aires (CONICET – UBA)Buenos AiresArgentina

Personalised recommendations